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the field where important discoveries were made only after lengthy
periods of trial-and-error exploration and incremental progress. Never-
theless, these notes are meant to be read in sequence, as every section
may rely on content developed in previous sections.

https://frankschindler.github.io


introduction to the microscopic theory of superconductors 2

Contents

1 Conventions 3

2 Fermions 5
2.1 Exchange statistics . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Creation and annihilation operators . . . . . . . . . . . . 6

2.3 Kinetic energy Hamiltonian . . . . . . . . . . . . . . . . . 8

2.4 Electron-electron interaction . . . . . . . . . . . . . . . . . 10

3 Cooper instability 12
3.1 Effective electron interaction . . . . . . . . . . . . . . . . . 12

3.2 Fermi sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Two-electron states . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Cooper pairing . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Mean field theory 19
4.1 Mapping to a spin model . . . . . . . . . . . . . . . . . . 19

4.2 Mean field solution . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 BCS mean-field ansatz . . . . . . . . . . . . . . . . . . . . 25

5 BCS theory 28
5.1 Bogoliubov-de Gennes Hamiltonian . . . . . . . . . . . . 28

5.2 Quasiparticle operators . . . . . . . . . . . . . . . . . . . . 29

5.3 BCS ground state . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Self-consistency and gap equation . . . . . . . . . . . . . 33

5.5 Quasiparticle excitations . . . . . . . . . . . . . . . . . . . 34

A Appendix: Mean-field theory as a variational principle 37

Bibliography 42



introduction to the microscopic theory of superconductors 3

1 Conventions

These notes assume a working knowledge of undergraduate quan-
tum mechanics. We set Planck’s constant to h̄ = 1.

We mostly work in 3 spatial dimensions, where we denote vectors
by bold symbols: v is a vector with components vi, i = x, y, z. Unit
vectors look like this: êi, e.g. êx = (1, 0, 0)T.1 Integrals over space will 1 To be a bit pedantic, I’m using T here

to denote the transpose:

(1, 0, 0)T =

1
0
0

.

be simply denoted by2

2 Note that I’m using x for the position
vector so that, rather awkwardly, xx = x
is the coordinate x, xy = y, xz = z.

∫
dx ≡

∫ L/2

−L/2
dx
∫ L/2

−L/2
dy
∫ L/2

−L/2
dz. (1.1)

Here we work in a box of volume V = L3 and periodic bound-
ary conditions: particles leaving on one side come out again at the
opposite side, like in the videogame Pac-Man. This means that all
momenta are quantised to take on discrete values pi ∈ 2πZ/L,3 how- 3 This is so that momentum eigen-

functions of the form Ψp(x) ∼ eip·x

come out periodic in the box:
Ψp(x + Lêj) = Ψp(x), where êj is
the unit vector in j-direction (j = x, y, z).

ever, in the thermodynamic limit L → ∞ they will become arbitrarily
close and fill out the whole of the (infinitely large) momentum space.
We denote sums (and products) over all allowable momenta simply
by ∑p (by ∏p). To be explicit, for n a vector of integers n ∈ Z3,

∑
p

f (p) ≡
∞

∑
nx=−∞

∞

∑
ny=−∞

∞

∑
nz=−∞

f
(

2π

L
n
)

. (1.2)

In the thermodynamic limit, the momenta are ever closer spaced and
the sum over momentum space can be approximated by an integral:

∑
p

L→∞−−−→ V
∫ dp

(2π)3 ≡ V
∫ ∞

−∞

dpx

2π

∫ ∞

−∞

dpy

2π

∫ ∞

−∞

dpz

2π
. (1.3)

The extra factor V/(2π)3 is necessary so that we don’t overcount
momenta.4 4 A momentum-space cube of volume

(2π)3/L contains only a single momen-
tum that satisfies the quantisation rule
pi ∈ 2πZ/L, i = x, y, z.

We usually use σ as a label for the z-component of electron spin,
so that it ranges over the two values σ =↑, ↓ (spin up, Sz = +1/2, or
spin down, Sz = −1/2). A sum of the form ∑σ indicates summation
over both values of spin, so that

∑
σ

≡ ∑
σ=↑,↓

. (1.4)

Often we sum over both momenta and spin and abbreviate this by
∑pσ = ∑p ∑σ. The same is true for products such as ∏pσ.

Sometimes we will be a bit lazy with the sums and products, and
we will write down expressions like ∑

ϵp>0
p . What this means is that

we use a function ϵp ∈ R that depends on momentum p, and the
sum is over all momenta for which the condition ϵp > 0 is satisfied.5 5 In practice, ϵp will be the kinetic

energy of a single electron with mo-
mentum p.

To reiterate, this is still a sum over (a subset of) momenta p, not a
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sum over the different values of ϵp. More explicitly,

ϵp>0

∑
p

≡ ∑
p

∫ ∞

0
dϵ δ(ϵ − ϵp), (1.5)

where δ(x) is the Dirac delta function.
In most practical situations we will encounter, the quantities being

summed over will only depend on the value of the scalar function
ϵp, rather than on the full vector p. In this special case, and in the
thermodynamic limit, we can replace the sum by an integral over ϵ:

ϵp>0

∑
p

L→∞−−−→ V
∫ ∞

0
dϵ ρ(ϵ). (1.6)

Here, the function ρ(ϵ) must be chosen such that Vdϵ ρ(ϵ) is the
number of momenta p for which the function ϵp lies in the interval
dϵ.6 By comparing with Eqs. (1.3) and (1.5), we find 6 In practice, when ϵp is the kinetic

energy, ρ(ϵ) is called the density of states.

ρ(ϵ) =
∫ dp

(2π)3 δ(ϵ − ϵp). (1.7)
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2 Fermions

To describe a system of many electrons, which are fermions, we’ll
be using a bit of a different formalism from what you’re used to in
undergraduate quantum mechanics.

2.1 Exchange statistics

Quantum matter is composed of a multitude (∼ 1023) of identical
particles. As soon as we talk about more than one particle in quan-
tum mechanics and the particles are indistinguishable1, it becomes 1 The fact that electrons, the main actors

in quantum matter, are identical, comes
from quantum field theory. Microscop-
ically, electrons are excitations of the
electron field. Multiple electrons are
obtained from the same excitation of the
same field at different locations in space,
and are therefore indistinguishable in
all their inherent properties such as
mass, spin, magnetic moment, etc.

important to ask what their exchange statistics is, i.e., how the wave-
function behaves under the exchange of two particles.

Consider a wavefunction of two particles in position space, Φ(x1, x2)

that assigns a quantum amplitude Φ(x1, x2) ∈ C to the configura-
tion where particle 1 is located at position x1 ∈ R3 and particle 2

is located at position x2 ∈ R3. Since the two particles are indistin-
guishable, the corresponding quantum state should be the same if the
situation were reversed, and therefore

Φ(x2, x1)
!
= eiαΦ(x1, x2). (2.1)

Here, eiα with α ∈ R is some phase factor – recall that quantum
mechanical states have a gauge degree of freedom, in that complex
phase factors do not change any physical properties of a state. Doing
a double exchange by plugging Eq. (2.1) into itself, we obtain

Φ(x2, x1) = eiαΦ(x1, x2) = e2iαΦ(x2, x1), (2.2)

so that e2iα = 1 with solutions α = 0, π.2 Since these solutions are 2 This argument glosses over some
subtle topological considerations that
become relevant in two spatial dimen-
sions and give rise to anyons, particles
characterised by a general α ∈ R. How-
ever, in our three-dimensional universe,
all known microscopic particles that ap-
pear in the standard model of particle
physics satisfy either α = 0 or α = π.

discrete (they can not be continuously connected to each other, as all
solutions where α is between 0 and π are disallowed), there are two
allowed types of particles that compose all matter:

• Bosons (α = 0): The wavefunction of two bosons does not change
under exchange, Φ(x2, x1) = Φ(x1, x2). This means that multiple
bosons can occupy the same quantum state, e.g.

Φ(x1, x2) = ϕ(x1)ϕ(x2), (2.3)

where ϕ(x) is some single-particle wavefunction. For a macro-
scopic system of bosons, such a state describes a Bose-Einstein
condensate. In our universe, the force-carrying particles are bosons
(photons, gluons, gravitons, . . . ).

• Fermions (α = π): The wavefunction of two fermions is multi-
plied by a minus sign under exchange, Φ(x2, x1) = −Φ(x1, x2).
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This implies that a state of the form of Eq. (2.3) is impossible for
fermions, meaning that two fermions can never occupy the same
single-particle wavefunction. This result is known as the Pauli
exclusion principle. In our universe, matter particles are usually
fermions (electrons, protons, neutrons, quarks . . . ), but it is possi-
ble to obtain a boson by combining an even number of fermions
(so that the minus sign cancels). The Pauli exclusion principle is
the basic reason for why different elements behave differently,
giving rise to the surprising complexity of the periodic table.

In these notes, we will exclusively work with electrons, which are
fermions.

2.2 Creation and annihilation operators

Recall that a quantum wavefunction of a single particle, in the posi-
tion space basis, is a function of the form Φ(x) where x ∈ R3 ranges
over all possible coordinates the particle can occupy in space. In-
troducing a basis of position operator eigenstates |x⟩, which satisfy
x̂ |x⟩ = x |x⟩ where x̂ is the (single-particle) position operator, we can
write

Φ(x) = ⟨x|Φ⟩ . (2.4)

Here, we have introduced the basis-independent quantum state |Φ⟩
that corresponds to the wavefunction Φ(x), it is alternatively ex-
pressed as

|Φ⟩ =
∫

dx ⟨x|Φ⟩ |x⟩ =
∫

dx Φ(x) |x⟩ , (2.5)

where we have used the resolution of the identity in terms of po-
sition eigenstates,

∫
dx |x⟩ ⟨x| = 1. For our purposes, it will be

much more convenient to work with abstract states |Φ⟩ rather than
basis-dependent wavefunctions Φ(x). How do we write down a state,
rather than a wavefunction, for two fermions?

Consider the two-fermion wavefunction

Ψ(x1, x2) = ϕA(x1)ϕB(x2)− ϕA(x2)ϕB(x1) = −Ψ(x2, x1), (2.6)

where ϕA(x) ̸= ϕB(x) must be orthogonal single-particle wavefunc-
tions to satisfy the Pauli exclusion principle. Naively, and following
Eq. (2.5), we can write the corresponding state as follows:

|Ψ⟩ =
∫

dx1dx2 Ψ(x1, x2) |x1⟩ ⊗ |x2⟩ , (2.7)

where ⊗ is the tensor product. However, for a large number of
fermions, it will be very cumbersome to work with this such states.
This is because due to the anti-symmetric nature of the wavefunc-
tions these states will contain a very large number of terms, all essen-
tially the same up to the exchange of two fermions.
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To avoid this problem, we would like a formalism that directly
incorporates fermionic exchange statistics, so that we do not have to
explicitly work with anti-symmetric wavefunctions all the time. The
trick is to introduce a set of creation (c†

x) and annihilation (cx) operators
and that satisfy the canonical anti-commutation relations3 3 This formalism is sometimes called

"second quantisation" for historical
reasons.{cx, c†

y} ≡ cxc†
y + c†

ycx = δ(x − y),

{c†
x, c†

y} ≡ c†
xc†

y + c†
yc†

x = 0,

{cx, cy} ≡ cxcy + cycx = 0,

(2.8)

where x and y are positions in real space. The important point is
that c†

x (cx) has the interpretation of creating (destroying) a fermion
at position x. We also introduce a vacuum state |0⟩ that is normalised
such that ⟨0|0⟩ = 1 and is defined by the condition

cx |0⟩ = 0, (2.9)

so that destroying (= annihilating) a particle is not possible and re-
sults in the zero vector (rather than any normalisable state). We can
then write the two-fermion state as

|Ψ⟩ =
∫

dx1dx2 Ψ(x1, x2)c†
x1

c†
x2
|0⟩

=
1
2

∫
dx1dx2 Ψ(x1, x2)(c†

x1
c†

x2
− c†

x2
c†

x1
) |0⟩

=
1
2

∫
dx1dx2 [Ψ(x1, x2)− Ψ(x2, x1)]c†

x1
c†

x2
|0⟩ ,

(2.10)

where we have used Eq. (2.8) in the second line, and then exchanged
integration variables x1 ↔ x2 for the second term only in the third
line. Crucially, this result implies that we can choose Ψ(x1, x2) to be
any function we want – it does not need to be anti-symmetric – and
the resulting state |Ψ⟩ will be the same as if we had properly anti-
symmetrised it. To see this, note that any function of two variables
can be split up into a symmetric plus an anti-symmetric function as
follows:

Ψ(x1, x2) =
1
2
[Ψ(x1, x2) + Ψ(x2, x1)]︸ ︷︷ ︸

symmetric

+
1
2
[Ψ(x1, x2)− Ψ(x2, x1)]︸ ︷︷ ︸

anti-symmetric

,

(2.11)
and only the anti-symmetric contribution survives Eq. (2.10).

It is now straightforward to show that a general N-fermion state of
the form

|Ψ⟩ =
∫

dx1dx2 · · ·dxN Ψ(x1, x2, . . . , xN)c†
x1

c†
x2
· · · c†

xN
|0⟩ (2.12)

will be automatically properly anti-symmetrised on account of the
fermionic anti-commutation relations in Eq. (2.8), no matter what the
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form of the function Ψ(x1, x2, . . . , xN) is. This means that as long as
we keep the algebraic properties of the creation and annihilation op-
erators encoded in Eq. (2.8) in mind, we do not need to worry about
anti-symmetrisation and can work with simple wavefunctions. We
will see that this formalism tremendously simplifies the treatment of
fermionic quantum systems, especially in the case of a macroscopic
number of fermions.

2.3 Kinetic energy Hamiltonian

We can build all operators acting on the fermionic Hilbert space from
the elementary creation and annihilation operators c†

x and cx. For
example, the operator creating a fermion at a fixed momentum p is
obtained by a Fourier transform:4 4 In an abuse of notation, we call this

operator c†
p where we really should

give it another letter such as d†
p to show

that it is not simply obtained from c†
x

by replacing x → p. However, in these
notes, we will only ever use letters
x, y, z to denote positions while letters
such as p, q, k denote momenta.

c†
p =

1√
V

∫
dx eipxc†

x, (2.13)

where V is the volume of the system. Correspondingly, the operator
destroying a fermion at a fixed momentum is given by

cp =
1√
V

∫
dx e−ipxcx. (2.14)

You can check that the momentum-space operators also satisfy the
canonical anti-commutation relations, in that

{cp, cq} = 0, {c†
p, c†

q} = 0, {cp, c†
q} = δpq. (2.15)

Moreover, the vacuum still satisfies cp |0⟩ = 0 also in the momen-
tum basis, which follows directly from the fact that cp only contains
annihilation operators.

We now introduce the occupation number operator in momentum
space, np = c†

pcp. This operator has eigenvalues 0 or 1, depending on
whether the fermionic mode at momentum p is occupied or empty.
In particular,

np |0⟩ = 0, the vacuum is empty

npc†
p |0⟩ = c†

p |0⟩ , this state has the fermion occupied

npc†
q |0⟩ = δpqc†

p |0⟩ , this is only nonzero when p = q.

(2.16)

You can derive these equations using the canonical anti-commutation
relations in Eq. (2.15). Note that unlike for bosons, np cannot be
larger than 1, because of the Pauli exclusion principle (no more than
1 fermion per single-particle state). In addition to the single-particle
number operators np, we can define the many-body number opera-
tor5 5 Note that the definition of N̂ involves

a sum, and not an integral, over mo-
mentum p. The reason is that we work
in a box of volume V and with periodic
boundary conditions, so that momen-
tum is discrete. To review this please
re-read the section on Conventions.



introduction to the microscopic theory of superconductors 9

N̂ = ∑
p

np = ∑
p

c†
pcp, (2.17)

which counts the total number of fermions in a given state. For in-
stance, for a collection of 4 momenta p1 ̸= p2 ̸= p3 ̸= p4 that are all
different,

N̂c†
p1

c†
p2

c†
p3

c†
p4
|0⟩ = 4c†

p1
c†

p2
c†

p3
c†

p4
|0⟩ ,

N̂c†
p2

cp3 c†
p3

c†
p4
|0⟩ = 2c†

p2
cp3 c†

p3
c†

p4
|0⟩ ,

· · · ,

(2.18)

which follows directly from the canonical anti-commutation relations
in Eq. (2.15) and the fact that cp |0⟩ = 0.

We are now in a position to write down the Hamiltonian for a
free fermion system with translational symmetry. Recall from clas-
sical physics that translational symmetry implies that momentum
is conserved, meaning that the Hamiltonian should be diagonal in
momentum. In particular, for a free system where the fermions do
not interact with each other, the Hamiltonian should preserve the
momentum of each individual fermion and can therefore only con-
tain operators of the form np.6 Consider a collection of fermions with 6 This is because np measures but does

not change the number of occupied
fermions at a fixed single-particle
momentum p.

fixed momenta p, each of which has a single-particle energy ϵp that
depends on p. For example, in the case of non-relativistic electrons,
we have

ϵp =
|p|2
2m

, (2.19)

where m is the electron mass. The total (= many-body, rather than
single-particle) energy is then given by the Hamiltonian

Ĥ = ∑
p

ϵpnp = ∑
p

ϵpc†
pcp. (2.20)

In practical terms, this operator goes over each momentum p, checks
that it is occupied, and only then adds the corresponding energy ϵp

(and otherwise adds 0 if there is no fermion with momentum p).
Using Eq. (2.15) you can confirm that H commutes with total particle
number N̂,

[Ĥ, N̂] = 0, (2.21)

which is to be expected as each term in Ĥ contains an equal number
of creation and annihilation operators.

So far, we have considered the simplest kind of fermions, which
are only characterised by a position or momentum variable. We
know from our universe that real fermions also have a spin degree
of freedom. In particular, electrons are spin- 1

2 particles and their
spin projection along the z-axis can be either up ↑ or down ↓, or a
superposition thereof. To describe electrons, we therefore need cre-
ation (c†

pσ) and annihilation (cpσ) operators that include spin, where
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σ =↑, ↓ in addition to momentum p.7 In analogy to Eq. (2.15), these 7 You can also define theses operators
in real space as c†

xσ and cxσ , the relation
to the momentum space operators is
still the same Fourier transform as in
Eq. (2.13) where the spin variable σ
simply stays along for the ride [see
Eq. (2.27) below].

fulfil the canonical anti-commutation relations

{cpσ, cqσ′} = 0, {c†
pσ, c†

qσ′} = 0, {cpσ, c†
qσ′} = δσσ′δpq. (2.22)

The Hamiltonian for a system of free electrons with translational
symmetry then becomes

Ĥ = ∑
pσ

ϵpσnpσ = ∑
p

ϵpσc†
pσcpσ. (2.23)

Unless there is a magnetic field, the energy of σ =↑ is the same as
that of σ =↓ due to time-reversal symmetry, which means that it is
usually safe to assume that the single-particle energy (= dispersion
relation) ϵpσ = ϵp is spin-independent. In analogy to Eq. (2.17), the
total number of electrons then becomes

N̂ = ∑
pσ

npσ = ∑
pσ

c†
pσcpσ, (2.24)

and again satisfies [Ĥ, N̂] = 0.

2.4 Electron-electron interaction

While the kinetic energy for electrons is most easily expressed in mo-
mentum space, see Eq. (2.23), interactions between different electrons
are simpler in real space because they are local – we expect the inter-
action between two electrons to become negligible in the limit where
they are far apart from one another.

A simple class of interactions only depends on the density of elec-
trons at a given point x in space. In analogy to the electron number
operator npσ in momentum space, we define the electron density op-
erator at a position x and for a given spin σ via

nxσ = c†
xσcxσ. (2.25)

Here, we have straightforwardly generalised the real space creation
and annihilation operators to include spin, so that they satisfy the
canonical anti-commutation relations

{cxσ, cyσ′} = 0, {c†
xσ, c†

yσ′} = 0, {cxσ, c†
yσ′} = δσσ′δ(x − y). (2.26)

The real-space and momentum-space operators are again related to
each other via a Fourier transform, e.g.,

c†
pσ =

1√
V

∫
dx eipxc†

xσ. (2.27)

To see that nxσ is a density, note that

N̂ = ∑
pσ

c†
pσcpσ = ∑

σ

∫
dx c†

xσcxσ = ∑
σ

∫
dx nxσ, (2.28)
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which you can derive using Eq. (2.27) and the canonical anti-commutation
relations in Eq. (2.26). Using the density operators, we can now write
the standard Coulomb interaction between electrons as follows:

ĤCoulomb =
1
2 ∑

σσ′

∫
dxdy

e2

4πϵ0|x − y|nxσnyσ′ , (2.29)

where the factor 1/2 in front makes sure that we count every pair of
electrons only once.
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3 Cooper instability

In this section, we’ll introduce the starting point for the microscopic
theory of superconductivity: a metal in its ground state, also known
as the Fermi sea. We’ll then have a look at the effective interaction
between electrons above the Fermi sea. Following Leon Cooper’s
seminal work in 1956, we will show that any arbitrarily small attrac-
tive interaction leads to bound states, so-called Cooper pairs.

3.1 Effective electron interaction

Consider a metal. Our cartoon picture of the metal only involves
two ingredients: the conduction (valence) electrons, and the left-
over lattice of atomic ions1, which we’ll often just call "atoms". Since 1 The atoms potentially contain further

lower-shell electrons that we do not care
about.

the atoms are much heavier than the electrons, they don’t move as
much. For all practical purposes, we can assume that they only move
about their equilibrium positions in small lattice vibrations, so-called
phonons. To simplify things further, we’ll assume that the valence
electrons roam freely through the metal and basically do not notice
the lattice, with one important exception: due to the phonon back-
ground, their interaction is not of the usual Coulomb type. Recall
that in vacuum, electrons repel as they have an equal elementary
charge e, and their Hamiltonian reads

Ĥvac = ∑
pσ

|p|2
2m

c†
pσcpσ︸ ︷︷ ︸

Ĥvac
kin

+
1
2 ∑

σσ′

∫
dxdy

e2

4πϵ0|x − y|nxσnyσ′︸ ︷︷ ︸
Ĥvac

int

, (3.1)

where we have abbreviated the kinetic part of the Hamiltonian by
Ĥvac

kin and the interaction part by Ĥvac
int . Here, m is the electron mass in

vacuum, and ϵ0 is the electric permittivity in vacuum. Don’t worry
if this expression looks horrible, we will never have to solve it in this
class, and we will instead look at more simplified models. In fact, it is
near impossible to diagonalise this kind of Hamiltonian for a realistic
number of electrons, say an Avogadro’s number N ∼ 1023 worth of
electrons, even numerically!2 2 In the early 1990s, supercomputers

could solve this problem for about
N ∼ 10 electrons without making
approximations. Nowadays, in the
2020s, this has improved to only around
N ∼ 30 electrons. The problem is
that even though computing power
increases exponentially with time
(Moore’s law), so does the size of the
n-electron Hilbert space.

It turns out that due to the background of an ionic lattice and
phonon vibrations, the electrons in a metal – at least at low energies
– attract rather than repel. This is possible because of two main rea-
sons: (1) In any material at equilibrium, the overall charge density is
neutral. The net negative charge of an electron is cancelled by a back-
ground of positively charged atomic ions in the surrounding mate-
rial. This effect neutralises the Coulomb repulsion between electrons
at long distances. (2) However, at short distances, electrons do have a
noticeably negative charge that distorts the positively charged crys-
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a b c
Figure 1: Illustration of the effective
attractive interaction between electrons
mediated by lattice vibrations. a A
negatively charged conduction electron
(red) passes through a crystalline lattice
of positively charged atomic ions (blue).
Due to the presence of lower-shell
valence electrons (not shown), the
overall charge density is neutral. b The
lattice ions are attracted to the local
net negative charge of the conduction
electron. The electron moves on quickly,
but the ions remain distorted for a
little while longer because they are
much heavier. This creates a region
of net positive charge. c A second
conduction electron is attracted to this
region. At the same time, the original
electron is slowed down a little bit as
it is drawn back to the positive charge.
As a consequence, the two electrons
experience a net attraction.

tal lattice around them, creating an accumulation of positive charge
that remains long after the electron has moved on. This is because
electrons have very low mass compared to atoms, and so the atoms
take a much longer time to relax back to their equilibrium state once
an electron has passed through. Other electrons then see this accu-
mulation of net positive charge and are attracted to it, creating an
overall effective attraction between electrons. For an illustration of
this mechanism, see Fig. 1. We should note, however, that a precise
derivation of the effective attractive interaction between electrons re-
quires a fully quantum treatment and advanced field theory methods
that go beyond the scope of this course.

In this course, we will not delve deeper into deriving the specific
form of the attraction, because its details are mostly inessential to
the phenomenon of superconductivity: any attractive interaction will
do the job, a phonon-mediated one is just one example3. Usually, 3 It is, however, the most common

example, underlying all so-called
"conventional" superconductors.

electrons in a metal are well approximated by a Hamiltonian of the
form

Ĥ = Ĥkin + Ĥint = ∑
pσ

ϵpc†
pσcpσ + Ĥint, ϵp =

|p|2
2m∗ − EF. (3.2)

Here, we have left the form of the interaction part of the Hamil-
tonian Ĥint unspecified for now, and only note that it is attractive
rather than repulsive, and that it preserves translational symmetry4. 4 Later on, we will use that total mo-

mentum is a conserved quantity due to
the translational symmetry of Ĥ.

In the kinetic part of the Hamiltonian Ĥkin, we have assumed the
usual non-relativistic energy-momentum dispersion for the electrons,
with two modifications: (1) the effective electron mass m∗ may differ
from the electron mass in vacuum m due to the presence of the crys-
talline background, and (2) the Fermi energy EF makes it energetically
favourable to have a finite density of electrons in the metal.5 5 Note that without EF , the lowest

energy eigenstate of Ĥkin would be
simply the boring fermionic vacuum
state |0⟩. This is because all single-
electron energies ϵp would be non-
negative, so that it’s best to have no
electrons at all.

3.2 Fermi sea

Let us first fully understand the kinetic part of the Hamiltonian Ĥkin

before we consider the effect of interactions. The operator Ĥkin is
quadratic in the fermion creation and annihilation operators, a
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hallmark of a non-interacting Hamiltonian: as shown in the section
on Fermions, the many-body eigenstates of such an operator are ob-
tained from products over single-electron operators acting on the
vacuum. The lowest-energy eigenstate of Ĥkin (the non-interacting
ground state) |FS⟩ is obtained when all single-electron states with ki-
netic energy |p|2/2m∗ ≤ EF are occupied, irrespective of their spin
σ =↑, ↓:6 6 Recall from the Conventions section

that in ∏
ϵp≤0
p , the product ranges over

all momenta p for which ϵp ≤ 0 is
satisfied.

|FS⟩ =
ϵp≤0

∏
p

∏
σ

c†
pσ |0⟩ . (3.3)

The state |FS⟩ is called the Fermi sea: you can think of it as an ocean
of electrons7 (which are fermions), and the electrons right at its sur- 7 An ocean in momentum space, admit-

tedly. The analogy is a bit stretched.face (the Fermi surface) have kinetic energy EF. Geometrically, the
momenta occupied in the Fermi sea form a ball in momentum space
with radius p0 =

√
2mEF, bounded by a spherical Fermi surface.8 8 In fact, there are many energetically

degenerate (with respect to Ĥkin)
states that are obtained from |FS⟩ by
removing electrons at the Fermi surface,
so we have made a bit of an arbitrary
(but harmless) choice in singling out
|FS⟩ as our preferred ground state.

The kinetic energy of the Fermi sea is

Ĥkin |FS⟩ = 2
ϵp≤0

∑
p

ϵp |FS⟩ ≡ EFS |FS⟩ , (3.4)

and this is the lowest possible eigenvalue of Ĥkin (recall that all ϵp

contributing to this sum are non-positive).9 Here, the factor of 2 comes 9 Please note that EFS ̸= EF. EFS is the
extensive energy of the many-body
ground state |FS⟩. EF is the intensive
energy of a single electron at the Fermi
surface, i.e., the energy of the largest-
momentum single-particle states that
are occupied in |FS⟩. I’m sorry for the
unfortunate choice of labelling. To
make up for it, we will set EFS = 0
shortly, so that it won’t bother us much
in the future.

from the spin degeneracy: ϵp depends only on electron momentum
but not on spin.

Importantly, due to fermionic statistics we have c†
pσ |FS⟩ = 0

whenever ϵp ≤ 0. On the other hand, the state c†
pσ |FS⟩ = 0 where

ϵp > 0 is well defined and satisfies

Ĥkinc†
pσ |FS⟩ = (EFS + ϵp)c†

pσ |FS⟩ . (3.5)

Correspondingly, these states sweep out a continuum of Ĥkin eigen-
states with energies arbitrarily close to10, but above, EFS. The Fermi 10 The positive energies ϵp get arbitrar-

ily close to zero in the thermodynamic
limit L → ∞ where the momenta p are
spaced infinitely close together.

sea |FS⟩ is said to be gapless, as it is not separated from higher-energy
states by an energy gap that remains finite in the thermodynamic
limit; the absence of such a gap is one of the main characteristics of
a metal. In contrast, both insulators and superconductors are char-
acterised by a finite (single-electron) gap above the ground state. As
we have found a gapless ground state when considering only Ĥkin,
this means that we need to take the interaction term Ĥint seriously
into account to develop a theory of superconductors: unlike metals,
superconductors intrinsically rely on electronic interactions.11 11 For insulators, there exists a further,

entirely non-interacting mechanism to
stabilise an energy gap. This trick relies
on having a multi-valued kinetic energy
ϵp, that is, multiple bands of energy
exist for any given momentum. Such
a gapped band structure relies on the
specific details of the crystalline lattice
of the insulator. It cannot explain the
formation of a gap in superconductors,
as superconductivity has been observed
in a wide variety of crystalline lattices.

From now on, we will choose our (many-body) energy axis so
that EFS ≡ 0. In this convention, the full many-body spectrum of
Ĥkin becomes non-negative.
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3.3 Two-electron states

We now consider the effects of interactions on the Fermi sea. For the
Fermi sea state |FS⟩ to be a good starting point at all for the study
of superconductivity, the overall strength of the interactions should
be very weak compared to the kinetic energy, and this is in fact the
case in the great majority of all materials. To begin with, as a baby
problem, we will look only at two electrons that interact above an
otherwise calm (non-interacting) Fermi surface. In general, their
Hilbert space is spanned by product states of the form

|pqσσ′⟩ = c†
p+qσc†

−qσ′ |FS⟩ , (3.6)

which have a kinetic energy ϵp+q + ϵq (recall we had set EFS ≡ 0).
The single-electron momenta appearing in these states are chosen to
result in a well-defined total momentum p, which is preserved due to
the translational symmetry of the Hamiltonian Ĥ. Correspondingly,
Ĥ may mix between two-electron states with different q, but it will
always preserve p; we can fix p from the outset.

Due to fermionic statistics, |pqσσ′⟩ only exists when ϵp+q > 0
and ϵq > 0 (otherwise, |pqσσ′⟩ = 0, which is not a normalisable
state). Correspondingly, if it were not for interactions, |pqσσ′⟩ would
always have an energy that is – at least a bit – larger than the energy
of the Fermi sea. We now want to see if we can find a two-particle
bound state that has a negative energy, implying that it has lower
energy than all non-interacting states12, on account of the attractive 12 We call all states non-interacting that

are obtained from products of fermionic
creation and annihilation operators
(but not sums of products). That is, all
eigenstates of Ĥkin are non-interacting.

interactions present in Ĥint. If such a bound state existed, the Fermi
sea would be unstable to pair formation, and could not be the true
ground state of the fully interacting system.

To maximise our chance of finding a bound state, we’d first like
to minimise the kinetic energy of the electron pair, and therefore set
its total momentum to zero: p = 0.13 You can convince yourself that 13 We cannot do better than that: you

might be tempted to just set all mo-
menta to zero, p = q = 0, but we are
not allowed to do that as only the total
momentum p is a conserved quantity.
The Hamiltonian will mix two-electron
states with different relative momenta q.

ϵp+q + ϵq, when viewed only as a function of p, has a minimum at
p = 0. While we’re at it, let us also set the total spin of the pair to
zero: σ =↑, σ′ =↓. This choice simplifies the math that follows quite
a bit, because it makes the two electrons entering the state |pqσσ′⟩
distinguishable, which means we don’t have to worry about their
fermionic statistics too much. Moreover, we expect a net spin-zero
(singlet) state to have the lowest possible energy given an attractive
interaction: since they already differ in their spin, the electrons may
then occupy the same position in real space, where their attraction is
strongest. To summarise, to look for bound states we will work with
a basis of two-electron states |q⟩ of the form

|q⟩ ≡ |0 q ↑ ↓⟩ = c†
q↑c†

−q↓ |FS⟩ . (3.7)
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3.4 Cooper pairing

To determine the effect of interactions, we express the Hamiltonian Ĥ
in the basis of the two-electron states |q⟩:14 14 Technically, this means we’re using

the states |q⟩ as a variational basis.

hqq′ ≡ ⟨q|Ĥ|q′⟩ = 2ϵqδqq′ + ⟨q|Ĥint|q′⟩ , (3.8)

where we have used that ϵ−q = ϵq. To proceed, we finally have to say
a bit more about the form of the attractive interaction Hamiltonian
Ĥint. The key here is to choose an interaction that is simple enough
to allow for a solution, but at the same time complicated enough to
capture the essential physics at play. In a seminal 1956 paper, Leon
Cooper at the University of Illinois postulated the following form:15 15 Leon N. Cooper. Bound electron pairs

in a degenerate fermi gas. Phys. Rev.,
104:1189–1190, Nov 1956

⟨q|Ĥint|q′⟩ =

−g/V 0 < ϵq, ϵq′ ≤ ω,

0 otherwise.
(3.9)

Here, g > 0 is some positive constant tuning the strength of the in-
teraction, V is the volume of the box in which the electrons live, and
ω is a characteristic phonon frequency (the "Debye frequency") that
we can assume to be much smaller than the Fermi energy: ω ≪ EF.
The minus sign in front of g indicates that the interaction is attrac-
tive rather than repulsive: it lowers the energy of a pair of electrons,
favouring pair binding. This form of the matrix elements of Ĥint is a
dramatic simplification of previous exact calculations. For now, we’ll
take it for granted and carry on: Clearly, the Hamiltonian matrix hq,q′

allows for an infinite family of exact eigenvectors Ψp
q of the form16 16 This should be read as a family of

eigenvectors Ψp, labelled by p where
ϵp > ω. Each of these vectors have
entries Ψp

q , where q ranges over all
allowed 2-electron states, that is, all
momenta satisfying ϵq > 0.

ϵp > ω : Ψp
q = δqp, ∑

q′
hqq′Ψ

p
q′ = 2ϵpΨp

q . (3.10)

The lowest energy of these eigenvectors is larger than 2ω, which is
positive, so they do not contain a bound state. More interestingly, we
can think about eigenvectors of the form ϕq ∼ θ(ω − ϵq),17 so that 17 θ(x) is the Heaviside step function,

which evaluates to θ(x) = 1 for x ≥ 0
and θ(x) = 0 for x < 0.

ϕq is only non-zero for 0 < ϵq ≤ ω. These states must satisfy the
eigenvalue equation

Eϕq =

0<ϵq′≤ω

∑
q′

hqq′ϕq′ = 2ϵqϕq −
g
V

0<ϵq′≤ω

∑
q′

ϕq′ . (3.11)

We can rearrange this equation as

(E − 2ϵq)ϕq = − g
V

0<ϵq′≤ω

∑
q′

ϕq′ . (3.12)

Evidently, the right-hand side of this equation does not depend on
q.18 To make sure the left-hand side does not depend on q as well, 18 Note that the variable q′ on the right-

hand side of the equation is being
summed over, so that all possible values
of q′ enter the expression.
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we have to choose ϕq = A/(E − 2ϵq), where A is some non-zero
constant that cancels from both sides of the equation. We obtain

1 = − g
V

0<ϵq≤ω

∑
q

1
E − 2ϵq

, (3.13)

where we have replaced the summation label q′ → q. To solve this
equation, we can go to thermodynamic limit (see the section on Con-
ventions) and replace the sum by an integral:

1 = −g
∫ ω

0
dϵ

ρ(ϵ)

E − 2ϵ
. (3.14)

Here, ρ(ϵ) is the density of states defined in Eq. (1.7). To simplify
things further, we can assume that ρ(ϵ) ≈ ρ(0) is approximately
constant around the Fermi energy ϵ = 0. This will be an okay ap-
proximation to make as long as ω ≪ EF. We then find

1 = −ρ(0)g
[
−1

2
ln(E − 2ϵ)

]ω

0
=

ρ(0)g
2

ln
(

E − 2ω

E

)
. (3.15)

Correspondingly, we obtain

E =
2ω

1 − e
2

ρ(0)g
≈ −2ω e−

2
ρ(0)g , (3.16)

where we have used that the interaction strength g is very small so
that 2

ρ(0)g ≫ 1.19 As a result, even for an infinitesimally small attractive 19 Note that the density of states ρ(ϵ)
is an intensive quantity, meaning that
it does not scale with volume and
instead converges to a finite value in the
thermodynamic limit L → ∞.

interaction, the spectrum of the two-electron Hamiltonian matrix hqq′

in Eq. (3.8) has an eigenstate with negative energy, corresponding to a
bound state of two electrons, a Cooper pair.

A few remarks are in order.

(1) The binding energy approaches zero as ρ(0) → 0. This means
that we need a gapless Fermi surface to support superconduc-
tivity. There is no Cooper pairing in a gapped insulator where
ρ(0) = 0 around the Fermi energy.

(2) The binding energy is non-analytic (i.e., does not have a Taylor
expansion in terms of positive powers) in the strength of the in-
teraction g. Since perturbation theory around the non-interacting
Hamiltonian corresponds to a Taylor expansion g, this implies
that Cooper pairing is a non-perturbative result that does not show
up at any order in perturbation theory. This fact has led quite a few
physicists astray in the early days of superconductivity!

(3) Recall that we had found a continuum of two-electron states at
energies E > 2ω in Eq. (3.10), as well as a single bound state
with negative energy. What happened to all the remaining states
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of the continuum, i.e., the two-particle states with kinetic energy
0 < E ≤ 2ω? By a little thought, you can check that these states
are still there; in fact they hide in plain sight in Eq. (3.12). See if
you can derive their form by setting E = 2ϵp for some specific
choice of ϵp.

(4) The Cooper pair wavefunction

ϕq =
A

E − 2ϵq
≈ 1

ϵq + ω e−
2

ρ(0)g
(3.17)

decays like ∼ 1/|q|2 away from its peak at ϵq = 0.20 Corre- 20 Recall that we defined ϕq to be
non-zero only for ϵq > 0, so that

the singularity at ϵq = −ω e
− 2

ρ(0)g is
avoided.

spondingly, it is large only around the Fermi surface. This fact
is reassuring as it means that changing the form of the electron-
electron interaction in Eq. (3.9) away from the Fermi surface will
not significantly affect Cooper pair formation. x ̅ x ̅

o

a b

Figure 2: Spectrum of the 2-electron
Hamiltonian Eq. (3.8) without and
with interactions. a Without interac-
tions, Ĥint = 0. There are extensively
many eigenvalues above E = 0 that
approximate a continuum in the ther-
modynamic limit V → ∞. b With
interactions, where Ĥint ̸= 0 is given by
Eq. (3.9). The continuum of eigenvalues
above E = 0 remains unaffected, but
there is one additional discrete eigen-
value at E < 0, corresponding to the
Cooper pair bound state. (Technically,
the continuum is missing a single state
to account for the new bound state
at fixed Hilbert space dimension, but
this mismatch becomes invisible in the
thermodynamic limit.)

We sketch the 2-electron spectrum of Eq. (3.8) assuming either
only the kinetic energy Ĥkin or the full interacting Hamiltonian Ĥ =

Ĥkin + Ĥint in Fig. 2. The spectra look almost the same, with the
notable exception of a single bound state in the interacting spectrum
that is not present in the purely kinetic case.

Since we have found a two-electron bound state with negative en-
ergy, the Fermi sea |FS⟩, which in our conventions has zero energy21,

21 You could object that we have not
yet considered the effect of Ĥint on
the energy of |FS⟩. However, you can
convince yourself that any energy shift
of |FS⟩, effectively changing EFS defined
in Eq. (3.4), would also enter in all
energy expectation values calculated
from the two-electron states |q⟩ defined
in Eq. (3.7), and therefore cancels out.

cannot be the true ground state of the full Hamiltonian Ĥ. What’s
more, once we established that two electrons can lower their energy
by pairing up, who’s to say that we can’t lower the total energy of the
system even further by pairing another two electrons, and another
two, and another two, and so on, until no electrons are left?
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4 Mean field theory

We have seen that the Fermi sea |FS⟩ is not a good ground state for
the Hamiltonian Ĥ = Ĥkin + Ĥint in Eq. (3.2) as long as Ĥint corre-
sponds to an attractive electron-electron interaction roughly of the
form of Eq. (3.9).1 This is because of the Cooper instability of the 1 More elaborate calculations show

that the same is true also for more
complicated = realistic choices of Ĥint,
as long as the interaction is attractive
around the Fermi surface. See:

Michael Tinkham. Introduction to
superconductivity, volume 1. Courier
Corporation, 2004

Fermi surface that favours the formation of electron-hole pairs. We
now have to look for a better ground state than the Fermi sea |FS⟩.

Since the Fermi sea contains macroscopically many electrons
(more than Avogadro’s number ∼ 1023 in realistic materials, and in-
finitely many in the thermodynamic limit), forming one or just a few
Cooper pairs won’t change it enough to invalidate our calculation
from the previous section. Hence we can expect that a macroscopic
number of Cooper pairs will form (we say that the Cooper pairs con-
dense) and the resulting ground state will significantly differ from the
Fermi sea. To study this ground state, let us have a look at the full
pairing Hamiltonian giving rise to Eq. (3.9)2: 2 We will prove in one of the problem

sheets that this Hamiltonian results
in Eq. (3.9). This model is sometimes
called the reduced BCS Hamiltonian.

Ĥ = Ĥkin + Ĥint = ∑
pσ

ϵpc†
pσcpσ + ∑

qq′
gqq′c

†
q↑c†

−q↓c−q′↓cq′↑, (4.1)

where we have defined

gqq′ =

−g/V −ω ≤ ϵq, ϵq′ ≤ ω,

0 otherwise.
(4.2)

Note that here we have chosen a symmetric energy window centered
around the Fermi surface ϵq = 0, while the definition in Eq. (3.9)
was manifestly asymmetric. This is not a contradiction, because the
variational states |q⟩ = c†

q↑c†
−q↓ |FS⟩ vanish for ϵq < 0, where |q⟩ = 0

holds due to the Pauli principle.
The Hamiltonian in Eq. (4.1) is still quite a bit too complicated to

allow us to easily deduce all of its eigenstates and energy eigenval-
ues3. 3 However, it is worth pointing out that

an exact (but tedious) solution is in
fact possible. In the thermodynamic
limit, this solution agrees with the
approximation that we’ll make, see:

J. Dukelsky, S. Pittel, and G. Sierra.
Colloquium: Exactly solvable
richardson-gaudin models for many-
body quantum systems. Rev. Mod. Phys.,
76:643–662, Aug 2004

4.1 Mapping to a spin model

To make progress, let us pretend the kinetic energy is zero and first
only try to solve the interacting term on its own:

Ĥint = − g
V

|ϵq |≤ω

∑
q

|ϵq′ |≤ω

∑
q′

c†
q↑c†

−q↓c−q′↓cq′↑. (4.3)

We can rewrite this Hamiltonian in a more familiar form by introduc-
ing the operators4 4 For now, treat this just as a definition

that we make, there is no way to "de-
rive" these equations. Instead we just
make this definition and see where it
leads us.

Ŝ+
q = c†

q↑c†
−q↓, Ŝ−

q = c−q↓cq↑, Ŝz
q =

1
2

(
c†

q↑cq↑ + c†
−q↓c−q↓ − 1

)
,

(4.4)
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which satisfy the commutation relations5 5 Check this![
Ŝ+

q , Ŝ−
q′

]
= δqq′2Ŝz

q,
[
Ŝz

q, Ŝ+
q′

]
= δqq′ Ŝ

+
q ,

[
Ŝz

q, Ŝ−
q′

]
= −δqq′ Ŝ

−
q .
(4.5)

Miraculously, these are exactly the same commutation operators as
for a system of decoupled quantum spins (one spin for each momen-
tum q)6, where Ŝz

q measures the spin projection on the z-axis, and 6 Please do not confuse this "spin" with
the actual microscopic spin σ =↑, ↓ of
each electron. We only use the term
spin here because the commutation
relations are the same as if Ŝz

q, Ŝ+
q , Ŝ−

q
would really describe a quantum
mechanical spin, this is only a mathe-
matical but not a physical analogy.

Ŝ+
q and Ŝ−

q are spin raising and lowering ladder operators7. More-

7 If it’s been a while since you last
looked at spin ladder operators, see the
documentation on easyspin.org for a
helpful cheat sheet.

over, since the interaction Hamiltonian in Eq. (4.3) only ever adds
or removes both ↑ and ↓ electrons at any given momentum q, we
can safely assume that in the ground state of Ĥint, the states ↑ and
↓ are either fully occupied or unoccupied at all momenta, so that
Ŝz

q = (nq↑ + n−q↓ − 1)/2 can realise eigenvalues8 Ŝz
q ∈ { 1

2 ,− 1
2}.

8 Recall that c†
qσcqσ = nqσ is the number

operator that has eigenvalue 1 when the
electron at momentum q and spin σ is
occupied and zero otherwise.

As a consequence, the spin operators given in Eq. (4.4) effectively act
on a spin- 1

2 degree of freedom associated with each momentum q.
We now recall from the theory of quantum mechanical spin9 that the

9 If you do not recall this, you can view
the following equation simply as a
definition of the operators Ŝx

q and Ŝy
q.

ladder operators Ŝ+
q and Ŝ−

q can be written as

Ŝ+
q = Ŝx

q + iŜy
q, Ŝ−

q = Ŝx
q − iŜy

q, (4.6)

so that the Hermitian operators Ŝx
q, Ŝy

q, and Ŝz
q satisfy the usual spin

algebra[
Ŝx

q, Ŝy
q′

]
= δqq′ iŜ

z
q,

[
Ŝy

q, Ŝz
q′

]
= δqq′ iŜ

x
q,

[
Ŝz

q, Ŝx
q′

]
= δqq′ iŜ

y
q. (4.7)

We also note the following relation:

Ŝ+
q Ŝ−

q′ =
(

Ŝx
q + iŜy

q

) (
Ŝx

q′ − iŜy
q′

)
= Ŝx

qŜx
q′ − iŜx

qŜy
q′ + iŜy

qŜx
q′ + Ŝy

qŜy
q′ ,

(4.8)

so that using the shorthand ∑
|ϵq |≤ω
q ≡ ∑̃q for the reduced sums, the

interaction Hamiltonian becomes

Ĥint = − g
V ∑̃q,q′ Ŝ

+
q Ŝ−

q′ = − g
V ∑̃q,q′

(
Ŝx

qŜx
q′ + Ŝy

qŜy
q′ − i

[
Ŝx

q, Ŝy
q′

])
= − g

V ∑̃q,q′

(
Ŝx

qŜx
q′ + Ŝy

qŜy
q′

)
− g

V ∑̃qŜz
q.

(4.9)
Introducing the extensive total spin operators

Ŝx ≡ ∑̃qŜx
q, Ŝy ≡ ∑̃qŜy

q, Ŝz ≡ ∑̃qŜz
q, (4.10)

the interaction Hamiltonian becomes

Ĥint = − g
V

[
(Ŝx)2 + (Ŝy)2 + Ŝz

]
. (4.11)

We now note that Ŝx,y,z are extensive operators defined via sums
over a macroscopic number of momentum modes in Eq. (4.10). Since

https://easyspin.org/documentation/spinoperators.html
https://easyspin.org/documentation/spinoperators.html
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the number of momenta in the energy interval −ω ≤ ϵq ≤ ω scales
proportionally to the volume V, we expect the relative scaling

(Ŝx)2 ∼ O(V2), (Ŝy)2 ∼ O(V2), Ŝz ∼ O(V). (4.12)

It will therefore be safe to neglect the term proportional to Ŝz in the
thermodynamic limit V → ∞10, so that we finally obtain 10 Recall that the energy of the full

system, as measured by Ĥint, should be
an extensive quantity that scales ∝ V.Ĥint ≈ − g

V

[
(Ŝx)2 + (Ŝy)2

]
. (4.13)

A remark about symmetry before we go on: Since Ŝz anti-commutes
with the other spin operators, {Ŝz, Ŝx} = {Ŝz, Ŝy} = 0, Ĥint has a U(1)
rotational symmetry that corresponds to rotations about the z-axis,
generated by11 Ŝz: [Ŝz, Ĥint] = 0. By writing out Ŝz using Eq. (4.4), we 11 An arbitrary rotation about the z-axis

by an angle ϕ can then be written in
terms of the unitary operator U(ϕ) =
exp(iϕŜz). The collection of all such
operators for different ϕ forms the
one-dimensional unitary group U(1).

see that this symmetry is nothing but particle number conservation:

Ŝz =
1
2∑̃q

(
c†

q↑cq↑ + c†
−q↓c−q↓ − 1

)
=

1
2∑̃q

(
nq↑ + n−q↓ − 1

)
=

1
2∑̃q,σ

(
nqσ −

1
2

)
=

1
2
(

Ñocc − Ñ
)
=

1
2

Ñocc − const.,
(4.14)

where Ñocc is the total number of electrons that are occupied in the
momentum space interval where −ω ≤ ϵq ≤ ω and Ñ is the total
number of momenta in the same interval, that is, ∑̃q1 = Ñ. Hence
the fact that [Ŝz, Ĥint] = 0 commutes can be directly traced back to
the fact that Ĥint in Eq. (4.3) preserves overall particle number (every
term in the sum creates two electrons and annihilates two electrons)
and does not mix between momenta that are respectively outside and
inside the interval −ω ≤ ϵq ≤ ω.

4.2 Mean field solution

We will now find the ground state of the simplified spin Hamiltonian
in Eq. (4.13),

Ĥint = − g
V

[
(Ŝx)2 + (Ŝy)2

]
, (4.15)

using two alternative methods: First, in a mean-field approxima-
tion, and then by exact solution. While the two methods agree in the
thermodynamic limit, their physical interpretation is surprisingly
different. This solution will be a helpful stepping stone towards the
solution of the full superconductor Hamiltonian in Eq. (4.1).

Mean field theory is a method for finding approximate eigenstates
of quantum many-body systems by expanding their Hamiltonian
about expectation values (the "mean fields") of certain operators.
Mean field theory is universally applicable and renders complicated
quantum problems soluble; however, it is fundamentally an approx-
imation that may or may not be valid for a given physical problem.
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Sometimes mean field theory gives physically incorrect results, which
is why we will compare it to an exact solution later on12. We now 12 Using quantum field theory argu-

ments, it can be shown that mean field
theory for Hamiltonians with local
couplings becomes more and more
accurate in higher dimensions; the
method usually fails in one or two spa-
tial dimensions but is reliable in three
dimensions or higher. The present case
of the spin model in Eq. (4.15) formally
corresponds to infinite dimensions in
momentum space: each spin at a given
momentum interacts with all others
with equal strength, just as if they were
all nearest neighbours of one another.
We therefore expect mean field theory
to be highly accurate.

explain the general strategy for mean field theory and concurrently
apply it to the spin model in Eq. (4.15):

1. Expand all operators that appear in the Hamiltonian in terms of
their expectation value in the ground state (a complex number),
plus their fluctuation away from this mean (an operator), and only
keep terms up to linear order in the fluctuations.13

13 This results in a mean-field Hamil-
tonian that is solvable, because the
remaining operators are not coupled
to each other. At the same time, the
Hamiltonian now depends on a new
set of parameters, i.e., the presumed
ground state expectation values, which
we treat as unknown variables for now.

Application to the spin model

We rewrite the total spin operators as

Ŝi = mi +
(

Ŝi − mi
)

, mi = ⟨Ŝi⟩ (i = x, y). (4.16)

Here the expectation value is to be understood with respect
to the as of yet undetermined ground state. Plugging into
Eq. (4.15), we obtain

Ĥint = − g
V ∑

i
(Ŝi)2 ≈ − g

V ∑
i

[
(mi)2 + 2mi

(
Ŝi − mi

)]
,

(4.17)
where we have dropped the term that is of second-order in
the fluctuations (Ŝi − mi)2. Dropping all constant terms and
only keeping the term that includes the operators Ŝi, we
end up with a mean-field theory (MFT) Hamiltonian that
depends on the set of unknown parameters {mi}:

ĤMFT[{mi}] = −2g
V ∑

i
miŜi. (4.18)

This Hamiltonian is reminiscent of a Zeeman coupling of
the spin vector Ŝ = (Ŝx, Ŝy)T to an "external magnetic field"
m = (mx, my)T, it favours the alignment of the spin with
the mean field. Without loss of generality we can choose
this field to point along the positive x-spin direction, so that
mx > 0, my = 0. We then end up with the simplified MFT
Hamiltonian

ĤMFT[mx] = −2g
V

mxŜx. (4.19)

2. Diagonalise the resulting mean field Hamiltonian to find its
ground state.14 14 Due to the approximation we have

made, this step is now straightforward.
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Application to the spin model

The MFT Hamiltonian ĤMFT[mx] only depends on the op-
erator Ŝx and so its ground state is an eigenstate of Ŝx. Due
to the overall minus sign in the Hamiltonian ("ferromag-
netic coupling"), to minimise the energy we want the largest
Ŝx eigenvalue. The best we can do is to built an eigen-
state from all the + 1

2 eigenstates of the spin- 1
2 operators

Ŝx
q, so that the largest eigenvalue of the total spin operator

Ŝx = ∑̃qŜx
q is given by +Ñ/2 where Ñ is the total number

of momenta in the interval −ω ≤ ϵq ≤ ω. Correspondingly,
the MFT ground state (GS) is a product state of the form

|GSMFT⟩ = ⊗̃q |↑x⟩q , Ŝx
q |↑x⟩q = +

1
2
|↑x⟩q , (4.20)

and it satisfies

ĤMFT[mx] |GSMFT⟩ = − g
V

mx Ñ |GSMFT⟩ . (4.21)

[Here, ⊗̃q is our shorthand notation to denote the tensor
product over all momenta q with −ω ≤ ϵq ≤ ω.]

3. Calculate the actual operator expectation values in the ground
state and match them with the parameters we had introduced in
step (1) to obtain the physical mean field solution.15 15 This matching results in a set of self-

consistency equations that must be
solved in addition to diagonalising the
mean-field Hamiltonian.

Application to the spin model

Since |GSMFT⟩ is a product of eigenstates of Ŝx
q, it is also an

eigenstate of Ŝx and we immediately find

⟨GSMFT| Ŝx |GSMFT⟩ =
Ñ
2

!
= mx. (4.22)

To calculate the expectation value of Ŝy, we note that, in the
spin-1/2 basis where Ŝz

q = diag( 1
2 ,− 1

2 ) = σz/2 is diagonal
and σi (i = x, y, z) are the 2 × 2 Pauli matrices, we have
|↑x⟩q = (1, 1)T/

√
2 and Ŝy

q = σy/2 and therefore

⟨↑x|q Ŝy
q |↑x⟩q =

1
4
(1, 1)

(
0 −i
i 0

)(
1
1

)
= 0, (4.23)

so that
⟨GSMFT| Ŝy |GSMFT⟩ = 0 !

= my, (4.24)

confirming the validity of our choice my = 0. We can then
approximate the exact ground state energy using the MFT
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solution by calculating the expectation value of Ĥint in the
MFT state using Eq. (4.17):

EMFT ≡ ⟨GSMFT| Ĥint |GSMFT⟩ = − gÑ2

4V
. (4.25)

Note that the MFT expectation value of the second-order
term (Ŝx − mx)2, which we had dropped in the second
equality of Eq. (4.17), is exactly zero.

4.3 Exact solution

From the basic theory of quantum spin16, we recall that the full 16 If you want to revisit this, review
"addition of angular momenta" in any
quantum mechanics textbook.

Hilbert space acted upon by the Ŝi operators can be decomposed
into states of the form |s, ms⟩ that satisfy

(Ŝ · Ŝ) |s, ms⟩ = s(s + 1) |s, ms⟩ ,

Ŝz |s, ms⟩ = ms |s, ms⟩ ,
(4.26)

where Ŝ · Ŝ = (Ŝx)2 + (Ŝy)2 + (Ŝz)2. Here,

s = 0, 1, 2, . . . ,
Ñ
2
− 1,

Ñ
2

is called the total spin quantum number (assuming Ñ is even without
loss of generality) and

ms = −s, −s + 1, . . . , s − 1, s

is the spin projection on the z-axis.17 Technically, the states |s, ms⟩ 17 In fact, since in general we have that

∑Ñ/2
s=0 (2s + 1) < 2Ñ , states with the

same total spin s and spin projection
ms can appear multiple times in the full
2Ñ-dimensional Hilbert space.

form a basis for the different irreducible representations (multiplets)
of the rotation group SU(2) that are labelled by their total spin s.18

18 We don’t really need this technical
mumbo jumbo here, but maybe it helps
you to put things in context.

Working in such a basis, we note that

Ĥint = − g
V

[
(Ŝx)2 + (Ŝy)2

]
= − g

V

[
Ŝ · Ŝ − (Ŝz)2

]
= − g

V

[
s(s + 1)− m2

s

]
= − g

V
s(s + 1) +

gm2
s

V
.

(4.27)

The first term is negative and so we would like to maximise its ab-
solute value to minimise the energy, meaning s = smax = Ñ

2 in the
ground state. Importantly, in the entire Hilbert space there is only
a single multiplet with total spin s = Ñ

2 , as can be seen from the
fact that there is only a single state with spin projection ms = Ñ

2 ,
namely the state where all Ŝz

q = 1
2 are pointing up. The second term

in Eq. (4.27) is non-negative, and so to minimise the energy we would
like to set ms = 0. This means that the exact and unique ground state
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(GS) of Ĥint is a SU(2) basis state of the form |s, ms⟩ [Eq. (4.26)] and
given by

|GS⟩ = | Ñ
2

, 0⟩ . (4.28)

The ground state energy is obtained from Eq. (4.27) as

EGS = − g
V

Ñ
2

(
Ñ
2
+ 1
)
= − gÑ2

4V
− gÑ

2V
. (4.29)

Comparing with the MFT energy from Eq. (4.25), we compare

EGS = EMFT − gÑ
2V

< EMFT, (4.30)

so that the exact ground state energy is always strictly smaller than
the MFT energy. However, in the thermodynamic limit where Ñ ∼
V → ∞, the second term in EGS can be neglected so that we find

lim
V→∞

EMFT = EGS. (4.31)

This implies that our mean field solution works and recovers the
correct ground state physics.

4.4 BCS mean-field ansatz

Let us recap what we have learned from applying a mean field ap-
proximation to the simple spin model.

• The microscopic Hamiltonian Ĥint = − g
V [(Ŝx)2 + (Ŝy)2] of

Eq. (4.15) fully preserves spin rotations about the z-axis, which
are generated by the operator Ŝz: [Ŝz, Ĥint] = 0. In the fermionic
language, this symmetry corresponds to U(1) charge conserva-
tion symmetry [Eq. (4.14)], and fundamentally derives from the
fact that each term in the superconductor Hamiltonian in Eq. (4.1)
contains an equal number of electron creation and annihilation
operators.

• The mean field theory ground state |GSMFT⟩ = ∏̃q |↑x⟩q of
Eq. (4.20), which approximates the exact ground state energy ar-
bitrarily well in the thermodynamic limit, breaks Ŝz spin rotation
symmetry – and thereby charge conservation symmetry – because
it has all spins oriented in the x-direction. In particular, the expec-
tation value

⟨GSMFT| Ŝx |GSMFT⟩ ̸= 0 (4.32)

does not vanish, which immediately implies that Ŝz spin rotation
symmetry is broken.
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• By applying a rotation around the Ŝz axis to |GSMFT⟩ about an
angle ϕ, we obtain the ϕ-dependent mean field theory states

|GSMFT(ϕ)⟩ ≡ eiϕŜz |GSMFT⟩ , (4.33)

which are all degenerate in that they have the same energy expec-
tation value:

⟨GSMFT(ϕ)|Ĥint|GSMFT(ϕ)⟩ = ⟨GSMFT|Ĥint|GSMFT⟩ , (4.34)

this follows directly from [Ŝz, Ĥint] = 0. We therefore obtain a
macroscopic number of energetically degenerate ground states,
which all break Ŝz symmetry individually but are mapped to each
other under this symmetry. This constitutes a specific example of
spontaneous symmetry breaking: Even though the underlying
Hamiltonian (Ĥint) preserves the symmetry, the system may realise
a ground state that explicitly breaks it.

Translating back to the fermionic language, we see that the interac-
tion term Ĥint in the Hamiltonian has an approximate (exact in the
thermodynamic limit) ground state that spontaneously breaks U(1)
charge conservation symmetry. Let us now consider the full super-
conductor Hamiltonian from Eq. (4.1),

Ĥ = Ĥkin + Ĥint = ∑
pσ

ϵpc†
pσcpσ + ∑

qq′
gqq′c

†
q↑c†

−q↓c−q′↓cq′↑. (4.35)

Solving this Hamiltonian exactly is difficult, but we can still do mean
field theory just as before. In particular, note that the kinetic term
contains ϵp which is very small around the Fermi level where ϵp = 0
[recall Eq. (3.2)]. Correspondingly, at least around the Fermi level,
we expect that the ground state is similar to |GSMFT⟩ in that it spon-
taneously breaks U(1) charge conservation symmetry. When writing
out Eq. (4.32) in the fermionic operators, this spontaneous symmetry
breaking manifests itself as follows:

⟨GSMFT| Ŝx |GSMFT⟩

= ∑̃q ⟨GSMFT| Ŝx
q |GSMFT⟩

=
1
2∑̃q ⟨GSMFT|

(
Ŝ+

q + Ŝ−
q

)
|GSMFT⟩

=
1
2∑̃q

[
⟨GSMFT| c†

q↑c†
−q↓ |GSMFT⟩+ ⟨GSMFT| c−q↓cq↑ |GSMFT⟩

]
̸= 0.

(4.36)
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Here we have used Eq. (4.6) in the second line and Eq (4.4) in the
third line. Concurrently, we have

⟨GSMFT| Ŝy |GSMFT⟩

= ∑̃q ⟨GSMFT| Ŝy
q |GSMFT⟩

=
1
2i∑̃q ⟨GSMFT|

(
Ŝ+

q − Ŝ−
q

)
|GSMFT⟩

=
1
2i∑̃q

[
⟨GSMFT| c†

q↑c†
−q↓ |GSMFT⟩ − ⟨GSMFT| c−q↓cq↑ |GSMFT⟩

]
!
= 0.

(4.37)
These equations imply that at least some of the expectation values
⟨GSMFT| c−q↓cq↑ |GSMFT⟩ ≡ Φq are non-zero and real, because
Φ∗

q = ⟨GSMFT| c†
q↑c†

−q↓ |GSMFT⟩. However, recall that we can per-

form a rotation about the Ŝz axis to any other MFT ground state that
is polarised in the spin-xy plane, for instance a state where Ŝy has
a non-zero expectation value but Ŝx does not, or any spin orienta-
tion in between. Therefore, the most general mean-field theory is
obtained by allowing the expectation value Φq be a complex number,
i.e., Φq ∈ C.19 In 1957, John Bardeen, Leon Cooper, and Bob Schri- 19 Coincidentally, you can show that the

rotation about the Ŝz axis implemented
by the operator exp(iϕŜz) precisely
shifts the phase angle of the complex
number Φq by ϕ.

effer (often abbreviated as BCS) correspondingly suggested that the
actual ground state |BCS⟩ of the full superconductor Hamiltonian Ĥ
in Eq. (4.35) satisfies20

20 J. Bardeen, L. N. Cooper, and J. R.
Schrieffer. Theory of superconductivity.
Phys. Rev., 108:1175–1204, Dec 1957

⟨BCS|c−q↓cq↑|BCS⟩ = Φq ̸= 0. (4.38)

Here, Φq ∈ C is called the order parameter21 and its existence signifies 21 This name makes contact with sta-
tistical mechanics, where an order
parameter differentiates between dif-
ferent phases. For instance, in the
ferromagnetic phase of a spin model,
the order parameter magnetisation is
non-zero, while it is zero in the param-
agnetic phase. Similarly, a normal metal
is a phase where the superconducting
order parameter vanishes.

that the state |BCS⟩ contains an uncertain – but macroscopically large
– number of electron pairs: note that for any state with a fixed par-
ticle number, the above expectation value vanishes because c−q↓cq↑
reduces the number of electrons in the state by 2.22

22 In particular, note that
⟨FS|c−q↓cq↑|FS⟩ = 0, since the Fermi sea
state as defined in Eq. (3.3) contains a
definite number of electrons.
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5 BCS theory

Setting the kinetic energy Ĥkin = 0 to zero, we have seen that mean
field theory yields a ground state that approximates the true ground
state of the interaction Hamiltonian Ĥint well in the thermodynamic
limit. At the same time, mean field theory is much easier to work
out than any exact solution: in particular, in presence of a non-zero
kinetic Hamiltonian Ĥkin ̸= 0, a simple exact solution of the full
Hamiltonian Ĥ = Ĥkin + Ĥint is not available anymore, while mean
field theory can be straightforwardly applied to any model. In this
section, we will therefore work out the mean field solution of the full
"reduced BCS model" in Eq. (4.1). Of course, unlike in the simple toy
model where Ĥkin = 0, we do not rigorously know that mean field
theory is a good approximation for this model. However, given that
Ĥkin = ∑pσ ϵpc†

pσcpσ vanishes right around the Fermi surface ϵp = 0
where the interaction strength gqq′ becomes nonzero, we expect mean
field theory to remain a good approximation.

5.1 Bogoliubov-de Gennes Hamiltonian

We now want to find an order parameter Φq so that the energy of
|BCS⟩ is minimised. To simplify this problem further, we now make a
mean-field approximation: inspired by Eq. (4.38), we write

c−q↓cq↑ = Φq +
(
c−q↓cq↑ − Φq

)
, (5.1)

and then plug this into our expression for Ĥint, neglecting terms
quadratic in the difference (c−q↓cq↑ − Φq).1 Plugging into Eq. (4.35), 1 Physically, this means that we assume

that the fluctuations of the operator
c−q↓cq↑ around its expectation value Φq
are small at least for the ground state
and the other low-energy states.

we obtain

Ĥ = ∑
pσ

ϵpc†
pσcpσ + ∑

qq′
gqq′

(
Φ∗

qc−q′↓cq′↑ + c†
q↑c†

−q↓Φq′ − Φ∗
qΦq′

)
.

(5.2)
The last term just contributes an overall constant −∑qq′ gqq′Φ

∗
qΦq′ ∈

R to the Hamiltonian and so we can drop it. Up to some further
constant shifts2, we can then reorganise the remaining terms into 2 We will calculate them and derive

the full expression for Ĥ in a problem
sheet.

Ĥ = ∑
q

(
c†

q↑ c−q↓
)( ϵq ∑q′ gqq′Φq′

∑q′ gqq′Φ
∗
q′ −ϵq

)(
cq↑

c†
−q↓

)
≡ ∑

q
Ψ†

qHqΨq,
(5.3)

which should be interpreted as a vector-matrix-vector dot product
that results in a (operator-valued) scalar. We have used that ϵq = ϵ−q

and gq′q = gqq′ in the first line, and in the second line we have
introduced the 2-dimensional Nambu spinor Ψq = (cq↑, c†

−q↓)
T. We
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also introduced the 2 × 2 Bogoliubov – de Gennes Hamiltonian Hq; we
will simply call it the BdG Hamiltonian later on:

Hq =

(
ϵq ∆q

∆∗
q −ϵq

)
, ∆q = ∑

q′
gqq′Φq′ . (5.4)

The parameter ∆q is also called the superconducting gap, we will un-
derstand the reason for this name soon. From the definition of gqq′ in
Eq. (4.2), ∆q has a very simple q-dependence:

∆q =

−g ∑
|ϵp |≤ω
p Φp/V −ω ≤ ϵq ≤ ω,

0 otherwise.
(5.5)

Clearly ∆q is either zero (in the momentum space regions where
|ϵq| > ω), or it is a non-zero constant (in the region |ϵq| ≤ ω). This
means that when we perform a gauge transformation on all single-
electron states,

cqσ → eiαcqσ, α ∈ R, (5.6)

so that according to Eq. (4.38), ∆q transforms as3 3 Note that the state |BCS⟩ also gets
multiplied by an overall phase factor
under this transformation, but the
phase contributed by the bra cancels
that of the ket in Eq. (4.38).

∆q → e2iα∆q, (5.7)

we can always choose α such that ∆q is purely real, ∆q ∈ R. From
now on, we will therefore always assume ∆∗

q = ∆q and use this
equation to simplify expressions.

5.2 Quasiparticle operators

Importantly, the mean-field approximation has resulted in a Hamil-
tonian Ĥ that is bilinear in the Nambu spinors and does not mix
between different momenta q. We can therefore solve this many-body
Hamiltonian Ĥ straightforwardly by diagonalising the 2 × 2 single-
particle BdG Hamiltonian Hq. For this, it is helpful to first note a
certain symmetry property of Hq that is called particle-hole symmetry:
We can see from Eq. (5.4) that Hq always satisfies4 4 As a technical aside, the general

definition of particle-hole symmetry
also involves complex conjugation in
addition to conjugation by the Pauli
matrix σy, but this has no effect on the
Hq considered here as it is purely real.

Hqσy = −σyHq, σy =

(
0 −i
i 0

)
, (5.8)

where σy is one of the three Pauli matrices. This symmetry implies
that if we find an eigenvector Vq of Hq satisfying HqVq = −λqVq,
then

Hq
(
σyVq

)
= −σyHqVq = +σyλqVq = +λq

(
σyVq

)
, (5.9)

meaning that we get a second eigenvector "for free", which reads
Wq = iσyVq

5 and is associated with the eigenvalue +λq.6 As a conse- 5 We include the imaginary unit i here
out of convention to make iσy a real
matrix: since Hq is purely real, we can
always choose its eigenvectors to be
purely real, and so we should, because
that will make things easier for us in
the future.
6 And thereby, we have happily found
all eigenvectors of Hq since it is only a
2 × 2 matrix and so only has 2 eigenvec-
tors.
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quence, we can always diagonalise the Hermitian BdG Hamiltonian
Hq via the unitary matrix Uq = (Vq, Wq), whose columns are the
eigenvectors Vq = (vq, uq)T and Wq = iσyVq = (uq,−vq)T:

Hq = U†
qΛqUq, Λq = diag(−λq, λq), Uq =

(
vq uq

uq −vq

)
. (5.10)

In practice, for the BdG Hamiltonian given in Eq. (5.4), we find the
explicit expressions7 7 Try to verify this solution for yourself

by explicit calculation or using a com-
puter algebra system like Mathematica.

λq =
√

ϵ2
q + ∆2

q ≥ 0,

(
vq

uq

)
=

(
cos θq

sin θq

)
, θq = arctan

(
∆q

ϵq − λq

)
.

(5.11)
Notably the eigenvectors are normalised such that u2

q + v2
q = 1, which

follows directly from the fact that Uq is unitary: U†
qUq = 12×2. At

the same time, the eigenvectors are real: uq, vq ∈ R, we will use
this to simplify the calculations that follow. Plugging Eq. (5.10) into
Eq. (5.3), we obtain

Ĥ = ∑
q

Ψ†
qU†

qΛqUqΨq

= ∑
q

(
vqc†

q↑ + uqc−q↓
uqc†

q↑ − vqc−q↓

)T(
−λq 0

0 λq

)(
vqcq↑ + uqc†

−q↓
uqcq↑ − vqc†

−q↓

)
≡ ∑

q
λq(γ

†
q↑γq↑ + γ†

q↓γq↓),

(5.12)

where we have again dropped a constant energy shift8 and intro- 8 In particular, we have rewritten
γq↓γ†

q↓ = 1− γ†
q↓γq↓ using the canonical

anti-commutation relations from below,
Eq. (5.14). Dropping the 1 [which
just sums to an overall constant in
Eq. (5.12)], this effectively flips the sign
of the first eigenvalue −λqγq↓γ†

q↓ →
+λqγ†

q↓γq↓.

duced the quasiparticle operators

γq↓ = vqc†
q↑ + uqc−q↓, γq↑ = uqcq↑ − vqc†

−q↓. (5.13)

Using u2
q + v2

q = 1 and the fact that uq and vq are real, it is easy to
verify that these operators satisfy the canonical fermionic algebra

{γq↓, γ†
p↓} = δqp, {γq↑, γ†

p↑} = δqp,

{γq↓, γp↓} = 0, {γq↑, γp↑} = 0,

{γq↓, γp↑} = 0, {γq↓, γ†
p↑} = 0.

(5.14)

Note in particular the last two equations which are a bit more non-
trivial than the other vanishing commutators. These equations mean
that the fermionic modes created by γ†

p↑ and γ†
p↓ are fully indepen-

dent from one another.9 9 Physically, the γ† operators create
Bogoliubov quasiparticles that are
superpositions of electrons c† and holes
c. The fact that the BCS mean-field
Hamiltonian Ĥ becomes diagonal in
these operators in Eq. (5.12) means that
the Bogoliubov quasiparticles are the
normal modes of the superconductor.

Mathematically, the Bogoliubov quasi-
particles are obtained from electrons
and holes by a unitary "rotation" in
Fock space. They have a fixed spin
but do not have a well-defined charge,
similar to the BCS ground state itself.

This is a miraculous result: the superconducting mean-field
Hamiltonian

Ĥ = ∑
pσ

λpγ†
pσγpσ (5.15)
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takes on exactly the same form as the non-interacting Hamiltonian
Ĥkin = ∑pσ ϵpc†

pσcpσ, except that it is "non-interacting" in the Bogoli-
ubov quasiparticles γ instead of the electrons c. Moreover, while the
single-particle dispersion ϵp was gapless10, the quasiparticle disper- 10 By gapless, we mean that the kinetic

energy is minimised by occupying all
electronic states up to the Fermi level
ϵp = 0, and there are further electronic
states just above (and infinitesimally
close to) ϵp = 0. On the other hand,
the lowest energy in the Bogoliubov
quasiparticle dispersion is λq = ∆q,
which may not be close to λq = 0 at all.

sion λq =
√

ϵ2
q + ∆2

q has a gap of size ∆q, meaning that ∆q is the

energy of the lowest-lying excitation above the ground state of Ĥ
(more on this later in the section on Quasiparticle excitations). This
explains why ∆q is called the superconducting gap. We have already
seen that the gap is intimately related to the superconducting order
parameter via ∆q = ∑q′ gqq′Φq′ , meaning that the transition from a
normal metal to a superconductor is always accompanied by a gap
opening.

5.3 BCS ground state

As the γ’s are bona fide fermions, the Hamiltonian Ĥ in Eq. (5.12)
simply counts the number of occupied modes created by γ†

q↑ and

γ†
q↓, multiplies this number by the corresponding energy λq, and

then sums these contributions over all momenta q. Since we have
chosen λq as the non-negative branch of the square root in Eq. (5.11),
the ground state |BCS⟩ of Ĥ is simply given by the vacuum of the
γ-fermions, that is, γq↓ |BCS⟩ = γq↑ |BCS⟩ = 0 should hold for all
momenta q so that Ĥ |BCS⟩ = 0. An easy way to ensure this11 is to 11 You can understand how Ĥ anni-

hilates this state as follows: defining
|BCS⟩ in this way, in every term of
the sum that results from writing out
Ĥ |BCS⟩, there will always appear a fac-
tor γ2

qσ = 0 after suitably reordering the
γ operators using the anti-commutation
relations from Eq. (5.14). Try it!

define
|BCS⟩ = 1

N ∏
q

γq↑γq↓ |0⟩ , (5.16)

where N is a normalisation factor that ensures ⟨BCS|BCS⟩ = 1, and
|0⟩ is the usual fermionic vacuum that satisfies cqσ |0⟩ = 0. Crucially,
|0⟩ is the vacuum for the c-fermions (the microscopic electrons), but
not for the γ-fermions (the Bogoliubov quasiparticles), meaning that
γqσ |0⟩ ̸= 0.12 Plugging in the explicit expressions for the γ operators 12 In fact, instead of |0⟩, we could have

also chosen any other reference state
|Ψ⟩ that satisfies γqσ |Ψ⟩ ̸= 0 to define
|BCS′⟩ = 1

N ′ ∏q γq↑γq↓ |Ψ⟩. You can
show that both these definitions must
result in the same state (potentially up
to a phase factor), |BCS′⟩ = eiϕ |BCS⟩,
by using that the simultaneous eigen-
states of the occupation number opera-
tors γ†

qσγqσ form an orthonormal basis
of the many-body Hilbert space. There
is just a single state that has eigenvalue
γ†

qσγqσ = 0 for all choices of q and σ.

from Eq. (5.13), we can expand the ground state as follows:

|BCS⟩ = 1
N ∏

q

(
uqcq↑ − vqc†

−q↓

) (
vqc†

q↑ + uqc−q↓
)
|0⟩

=
1
N ∏

q

(
uqcq↑ − vqc†

−q↓

)
vqc†

q↑ |0⟩

=
1
N

(
∏

q
vq

)
∏

q

(
uqcq↑c†

q↑ − vqc†
−q↓c†

q↑

)
|0⟩

=
1
N ∏

q

(
uq + vqc†

q↑c†
−q↓

)
|0⟩ .

(5.17)

There’s a lot going on in this derivation so let’s take care to under-
stand each step. (1) First, we have realised that each of the terms
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uqc−q↓ can be commuted past all operators to its right until it hits
the vacuum and annihilates – the only problematic operator it could
interfere with is c†

−q↓, but this operator arises just once in the expres-
sion to the left, not right, of the term in question. Correspondingly we
can drop this term in the second line. (2) To go to the third line, we
have then pulled out the overall factor ∏q vq, as any such factor can
be absorbed into the normalisation term N (we have therefore just
dropped this factor altogether in line 4, because N is only implicitly
defined anyway). (3) We have then replaced the term cq↑c†

q↑ in the

third line by 1 − c†
q↑cq↑ using the canonical anti-commutation rela-

tions, however, the operator c†
q↑cq↑ can again be commuted past all

operators to its right to annihilate the vacuum, leaving us with just 1.
In a last step, we have flipped the two creation operators multiplying
vq to get a positive prefactor, which makes the expression look a bit
nicer. That’s it!

We are now ready to determine the value of the normalisation
factor N . For this we calculate

⟨BCS|BCS⟩ = 1
N 2 ⟨0|∏

q
(uq + vqc−q↓cq↑)∏

p
(up + vpc†

p↑c†
−p↓) |0⟩

=
1
N 2 ⟨0|∏

q
(uq + vqc−q↓cq↑)(uq + vqc†

q↑c†
−q↓) |0⟩

=
1
N 2 ⟨0|∏

q

(
u2

q + v2
qc−q↓cq↑c†

q↑c†
−q↓

)
|0⟩

=
1
N 2 ⟨0|∏

q

(
u2

q + v2
q

)
|0⟩ = 1

N 2 × 1 !
= 1,

(5.18)
so that we conclude that our state was already properly normalised
after all and we can just set N = 1. Again, let’s slowly walk through
what happened here: (1) First, we have reordered the terms in the
two products over momentum space to obtain a single product. This
was possible because the operators c−q↓cq↑ and c†

p↑c†
−p↓ commute

with each other unless q = p: for this special case only, we have
left the ordering of operators in line 2 exactly as it was in line 1,
with c−q↓cq↑ appearing to the left of c†

q↑c†
−q↓. (2) Then, to go to the

third line, we have used that the mixed terms in the product van-
ish: the mixed term uqvqc†

q↑c†
−q↓ can be commuted all the way to the

left to annihilate ⟨0|, and the mixed term vqc−q↓cq↑uq can be com-
muted all the way to the right to annihilate |0⟩. (3) In the last step,
we have noticed that c−q↓cq↑c†

q↑c†
−q↓ |0⟩ = |0⟩ using the canonical

anti-commutation relations, and then used that u2
q + v2

q = 1 must
hold since the eigenvectors of the BdG Hamiltonian are normalised.
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Our final result for the BCS ground state is therefore

|BCS⟩ = ∏
q

(
uq + vqc†

q↑c†
−q↓

)
|0⟩ . (5.19)

A few remarks are in order.

(1) As expected, |BCS⟩ does not preserve particle number. For every
momentum q, we have a superposition of a state with zero elec-
trons and a state with an electron pair. This ensures that adding
or removing a pair from |BCS⟩ does not annihilate the state, so
that the order parameter defined in Eq. (4.38) is non-zero.
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Figure 3: Plotting uq and vq as a func-
tion of energy ϵ between ϵ = −ω and
ϵ = ω. For this plot, we have chosen
∆q = −0.1ω in the range −ω ≤ ϵq ≤ ω,
and zero outside.

(2) Plotting the expressions for uq and vq in Eq. (5.11), we observe
that uq rises from 0 to 1 as ϵq is advanced from −ω to ω, while
vq drops from 1 to 0 in the same interval. (See Fig. 3.) Both func-
tions are approximately of the same size right around the Fermi
level ϵq = 0. This means that the superconductor consists mostly
of pairs with momenta around the Fermi surface. For momenta
far outside of the Fermi surface, the vacuum state with zero elec-
trons dominates.13 13 Note that deep below the Fermi

surface, uq ∼ 0 and vq ∼ 1, so that for
these momenta |BCS⟩ becomes a simple
product state of the same form as the
Fermi sea state |FS⟩ from Eq. (3.3),
meaning that there is no pairing either.
Pairing only happens around the Fermi
surface where uq and vq are both
sizeable.

(3) The functions uq and vq vary smoothly with q because they are
obtained from a diagonalisation of the smooth BdG Hamiltonian
Hq. Furthermore, the phase difference between uq and vq is the
same for all choices of q.14 This implies that |BCS⟩ represents a

14 For the simple model discussed here,
this phase difference is always zero
because we have chosen uq and vq to
be real. We have seen in Eq. (5.7) that
this can be always achieved by a gauge
transformation. [If you follow along
the calculation below Eq. (5.7), you will
see that ∆q being real implied uq and
vq could be chosen real.] However, it is
not possible to gauge away a relative
phase between two regions in space. This
observation leads to the fascinating
physics of the Josephson junction. Our
formalism so far does not cover this
possibility, because we have been
working in momentum space, which
assumes translational invariance so that
all regions of space must have the same
phase.

coherent collection of electron pairs that all enter with (roughly)
the same wavefunction, resembling Bose-Einstein condensation15.

15 Note that Cooper pairs are bosonic
in nature because they consist of two
fermions – meaning they do not anti-
commute with each other. However,
to be a bit nitpicky, they are techni-
cally not perfect bosons because the
operator c†

q↑c†
−q↓ does not satisfy the

usual bosonic commutation relations.
If you’re interested in this, look at the
literature on the BCS–BEC crossover.

Coherence is a unique property of the superconducting state, it
stabilises macroscopic quantum effects that are visible to the bare
eye16.

16 An example is the levitation of a
magnet above a superconductor, for
which you can find some cool videos on
YouTube.

5.4 Self-consistency and gap equation

So far, we have boldly called the ground state of the mean-field
Hamiltonian |BCS⟩, but we still have to make sure that this state
actually satisfies the original postulate Eq. (4.38), that is, the expecta-
tion value ⟨BCS|c−q↓cq↑|BCS⟩ should be equal to the order parameter
Φq. Let’s calculate this expectation value explicitly:

⟨BCS|c−q↓cq↑|BCS⟩
= ⟨0|∏

p
(up + vpc−p↓cp↑)c−q↓cq↑ ∏

k
(uk + vkc†

k↑c†
−k↓) |0⟩

= ⟨0| (uq + vqc−q↓cq↑)c−q↓cq↑(uq + vqc†
q↑c†

−q↓) |0⟩

= ⟨0| (uq + vqc−q↓cq↑)vq |0⟩
= ⟨0| uqvq |0⟩ = uqvq.

(5.20)
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In the third line, we have used that the operator c−q↓cq↑ only acts
nontrivially when p = k = q, all other terms in the products over p
and k commute past this operator and annihilate because u2

p + v2
p = 1

[this already showed up in the derivation in Eq. (5.18)]. Plugging in
the explicit solution from Eq. (5.11), we obtain

⟨BCS|c−q↓cq↑|BCS⟩ = uqvq = −
∆q

2
√

∆2
q + ϵ2

q

!
= Φq. (5.21)

Let us now recall that ∆q has a very simple q-dependence see [Eq. (5.5)]:
it is only nonzero in the interval −ω ≤ ϵq ≤ ω, where it takes on a
q-independent value ∆q ≡ ∆.

With this insight, we can convert Eq. (5.21) to an equation involv-
ing only ∆ by multiplying both sides of the equation by gpq and then
summing over q. Restricting the resulting equation to the interval
−ω ≤ ϵp ≤ ω, we obtain

∆ = −∑
q

gpq
∆q

2
√

∆2
q + ϵ2

q

=
g

2V

|ϵq |≤ω

∑
q

∆√
∆2 + ϵ2

q

, (5.22)

where we have again the definition of gpq in Eq. (4.2). If we manage
to find a solution to this condition with a non-vanishing ∆ ̸= 0, we
have successfully constructed a consistent mean-field theory for a
condensate of Cooper pairs.17 17 The trivial self-consistent solution

where ∆ = 0 always exists as well. It
just corresponds to the Fermi sea state
= a Fermi gas without any pairing.
Below the superconducting transition
temperature, this solution has a higher
overall energy than the superconductor
where ∆ ̸= 0.

To solve this equation, we cancel ∆ from both sides and then re-
place the last sum over momenta by an integral over energy as ex-
plained in the section on Conventions:

1 =
g
2

∫ ω

−ω
dϵ

ρ(ϵ)√
∆2 + ϵ2

≈ ρ(0)g sinh−1
(ω

∆

)
, (5.23)

where in the second line we have assumed that the density of states
is essentially constant ρ(ϵ) = ρ(0) in a window of energy ω around
the Fermi level ϵ = 0.18 We can now finally solve for ∆: 18 For more details, check out Eq. (1.6)

as well as the discussion just below
Eq. (3.14).

∆ =
ω

sinh [1/ρ(0)g]
≈ 2ω

exp [1/ρ(0)g]
= 2ωe−

1
ρ(0)g . (5.24)

5.5 Quasiparticle excitations

Let’s summarise our results so far. We have expressed the reduced
BCS Hamiltonian in the form

Ĥ = ∑
pσ

λpγ†
pσγpσ, λp ≥ 0. (5.25)

where the quasiparticle operators γpσ satisfy the usual canonical anti-
commutation relations.19 Correspondingly, the ground state |BCS⟩ is

19 Note that the quasiparticle operator
γpσ , which is defined in Eq. (5.13), does
not have a well-defined charge, because
it is a superposition of a creation
(charge +1 in units of electronic charge)
and an annihilation operator (charge
−1). However, γpσ has a well-defined
spin −σ, as it is a superposition of a
creation operator with spin −σ and an
annihilation operator with spin +σ.
Conversely, the quasiparticle creation
operator γpσ has a spin +σ as expected
for an operator that adds a particle with
definite spin σ.
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the quasiparticle vacuum defined by γpσ |BCS⟩ = 0. This definition led
us to the expression

|BCS⟩ = ∏
q

(
uq + vqc†

q↑c†
−q↓

)
|0⟩ , (5.26)

which we used to find the self-consistent value of the mean field
order parameter ∆q = θ(ω − |ϵq|)∆ with ∆ = 2ωe−

1
ρ(0)g , where

θ is the Heaviside step function. We would now like to investigate
the single-particle excitations above the ground state |BCS⟩. This
is straightforward because the Hamiltonian in Eq. (5.25) is already
diagonal in the quasiparticle basis: we can write down an excitation
with fixed momentum p and spin σ,

|pσ⟩ = γ†
pσ |BCS⟩ , (5.27)

and this state is automatically an eigenstate of Ĥ:20 20 Note in particular that Ĥ does not
contain any interactions among the
quasiparticles and instead reads like a
"kinetic energy" term written in terms
of the quasiparticle operators. We
have already used up all electronic
interactions in constructing the mean
field theory and associated quasiparticle
operators.

Ĥ |pσ⟩ = λp |pσ⟩ . (5.28)

Next to the BCS ground state at energy Ĥ |BCS⟩ = 0, we have there-
fore found a family of quasiparticle excitations above the ground
state with dispersion relation

λp =
√

ϵ2
p + ∆2

p =

√(
|p|2
2m

− EF

)2

+ θ(ω − |ϵp|)4ω2e−
2

ρ(0)g . (5.29)
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ωp

Figure 4: Comparison of the free (ϵp)
and superconducting (λp) dispersion
relation in the momentum range pF =√

2mEF to pω =
√

2m(EF + ω). For this
plot, we have chosen m = 1, EF = 10,
ω = 1, and ∆ = 0.5.

We plot this spectrum in Fig. 4 as a function of the absolute value
of momentum p. Importantly, there is a gap compared to the non-
interacting dispersion ϵp, with an energy difference of exactly ∆
at |p| =

√
2mEF, the Fermi momentum. This gap represents the

minimal energy of any excitation above the BCS ground state.
What do the quasiparticle excitations look like in the electron

basis? For this we can calculate for example

γ†
p↑ |BCS⟩ =

(
upc†

p↑ − vpc−p↓
)

∏
q

(
uq + vqc†

q↑c†
−q↓

)
|0⟩

=
(

upc†
p↑ − vpc−p↓

) (
up + vpc†

p↑c†
−p↓

)
∏
q ̸=p

(
uq + vqc†

q↑c†
−q↓

)
|0⟩

=
(

u2
pc†

p↑ − v2
pc−p↓c†

p↑c†
−p↓

)
∏
q ̸=p

(
uq + vqc†

q↑c†
−q↓

)
|0⟩

=
(

u2
pc†

p↑ + v2
pc†

p↑

)
∏
q ̸=p

(
uq + vqc†

q↑c†
−q↓

)
|0⟩

= c†
p↑ ∏

q ̸=p

(
uq + vqc†

q↑c†
−q↓

)
.

(5.30)
Correspondingly, we can interpret the quasiparticle excitation physi-
cally in terms of the breaking up of a pair of electrons (p ↑ and −p ↓)
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where we keep one electron (p ↑) and discard the other (−p ↑).
Since the minimal energy of such an excitation is the gap ∆ > 0, the
superconducting ground state is stable with respect to all perturba-
tions that have an energy much smaller than this gap. Compare this
with the Fermi sea state, which is gapless: as we saw in the section
on the Cooper instability, it is exactly this gaplessness (which re-
sulted in a nonzero density of states ρ(ϵ) in the whole energy range
−ω ≤ ϵ ≤ ω) that led to an instability towards the superconducting
state.
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A Appendix: Mean-field theory as a variational principle

Warning: Things are going to get technical here and this section is
entirely optional / not examinable. :)

You might wonder in what sense the mean field approximation we
had made in the section on Mean field theory is a good approx-
imation. Recall that in that section we had replaced the original
Hamiltonian of the system by an easily diagonalisable mean-field
Hamiltonian (the MFT Hamiltonian). Since we also had an exact so-
lution available in the case of the simple spin model [Eq. (4.15)], we
were able to compare the MFT solution and the exact solution and
showed that the MFT ground state approximates the exact ground
state energy arbitrarily well in the thermodynamic limit. However, in
the section on the BCS theory and later sections, we treated the full
superconductor Hamiltonian Eq. (4.1) with MFT, where an exact so-
lution is not readily available. How much can we trust MFT for such
cases where the full Hamiltonian is intractable?

In this appendix, let us be a bit philosophical and look at MFT
from a very general perspective. We assume a d-dimensional lattice1 1 This could be a real space lattice or a

momentum space lattice or something
else entirely; the only thing that’s
important for our purposes right now
is that there are infinitely many lattice
points in the thermodynamic limit and
that operators at different lattice points
commute with each other.

labelled by coordinates R and consider a general quantum many-
body Hamiltonian

H =a + ∑
Rα

bRαORα + ∑
RR′αβ

cRR′αβORαOR′β

+ ∑
RR′R′′αβγ

dRR′R′′αβγORαOR′βOR′′γ + · · · ,
(A.1)

where the ORα are a collection of few-body operators at lattice posi-
tion R labeled by the index α and

a, bRα, cRR′αβ, dRR′R′′αβγ, · · · ∈ C

are a set of model parameters.2 We assume that the parameters are 2 For example, in the case of a spin-
1/2 model we could have Oα = σα/2
equal to the 2 × 2 Pauli matrices, and
α = x, y, z.

chosen such that the Hamiltonian is Hermitian, H = H†. Moreover,
we choose the operators ORα so that they commute at different lattice
points:3 3 As an example, note that the operators

c†
q↑c†

−q↓ ≡ Oq,1 and c−q′↓cq′↑ ≡ Oq′ ,2
that appear in the superconductor
Hamiltonian in Eq. (4.1) commute when
q ̸= q′.

[
ORα, OR′β

]
∝ δRR′ . (A.2)

This restriction implies that the operators Oα must be bosonic, i.e.,
they cannot for example be fermionic creation and annihilation op-
erators of the form cR, c†

R as these would anti-commute at different
lattice positions.

MFT now decomposes these operators in terms of their expecta-
tion value and fluctuation as follows:

ORα = ⟨ORα⟩+ (ORα − ⟨ORα⟩). (A.3)
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Here, the average value is taken with respect to the putative MFT
ground state that we will determine later. Plugging this expansion
into H and keeping only terms linear in the fluctuations (ORα −
⟨ORα⟩), we obtain a MFT Hamiltonian that depends on the "vari-
ables"

⟨O⟩ = (⟨OR1,1⟩ , ⟨OR2,1⟩ , . . . ⟨ORN ,1⟩ , ⟨OR1,2⟩ , . . . )T,

where R1 . . . RN is the collection of all N lattice sites and the thermo-
dynamic limit corresponds to N → ∞.4 The resulting MFT Hamilto- 4 We do not use N = V here because

the volume V usually has units while N
is a dimensionless number. In the case
of a real or momentum space lattice, N
will be equal to the volume V up to a
dimensionful multiplier.

nian is then of the general form

HMFT[⟨O⟩] = A[⟨O⟩] + ∑
Rα

B[⟨O⟩]RαORα, (A.4)

where A[⟨O⟩], B[⟨O⟩]Rα ∈ C are functions of the variables ⟨O⟩ and
we have dropped all higher-order terms of the form

ORαOR′β, ORαOR′βOR′′γ, · · · .

To diagonalise the MFT Hamiltonian and find its ground state, we
can drop the scalar function A[⟨O⟩] because it multiplies the identity
matrix (it already is diagonal in any basis). We then have to diago-
nalise the remaining term

∑
Rα

B[⟨O⟩]RαORα.

Crucially, since the operators ORα commute at different lattice posi-
tions R, all eigenstates |Ψ⟩ of this term – including the ground state –
can be written in tensor product form

|Ψ⟩ = ∏
R

|ϕ⟩R , (A.5)

where the |ϕ⟩R live in the local Hilbert space at position R. This
means that they are only acted upon by the operators OR with the
same R (all other operators trivially commute past them) and we
choose them to satisfy

∑
α

B[⟨O⟩]RαORα |ϕ⟩R = ER |ϕ⟩R . (A.6)

To confirm that |Ψ⟩ defined in this way is an eigenstate, we compute

∑
Rα

B[⟨O⟩]RαORα |Ψ⟩ = ∑
Rα

B[⟨O⟩]RαORα ∏
R′

|ϕ⟩R′

=∑
R

 ∏
R′ ̸=R

|ϕ⟩R′

∑
α

B[⟨O⟩]RαORα |ϕ⟩R

=∑
R

ER

 ∏
R′ ̸=R

|ϕ⟩R′

 |ϕ⟩R =

(
∑
R

ER

)
|Ψ⟩ ,

(A.7)
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so that |Ψ⟩ is an eigenstate with eigenvalue ∑R ER. For self-consistency,
we now need to require

⟨ORα⟩
!
= ⟨Ψ0|ORα |Ψ0⟩ (A.8)

where |Ψ0⟩ ≡ ∏R |ϕ0⟩R is the ground state that minimises the energy
∑R ER. Since |Ψ0⟩ implicitly depends on the variables ⟨ORα⟩, this is a
potentially nonlinear equation that relates the ⟨ORα⟩ with each other
and can in general only be solved numerically.

As soon as self-consistency is achieved, we still need to confirm
that our mean-field approximation as a whole is sensible. Recall that
we had dropped all higher-order fluctuation terms5 that to arrive at 5 such as (ORα − ⟨ORα⟩)2

the MFT Hamiltonian in Eq. (A.4). To see if this is compatible with
the MFT solution, let us now calculate the ground state expectation
value of the general quadratic fluctuation term:

⟨Ψ0| (ORα − ⟨ORα⟩)(OR′β − ⟨OR′β⟩) |Ψ0⟩

= ⟨Ψ0|ORαOR′β |Ψ0⟩ − ⟨ORα⟩ ⟨OR′β⟩

=

(
∏
R′′

⟨ϕ0|R′′

)
ORαOR′β

(
∏
R′′′

|ϕ0⟩R′′′

)
− ⟨ORα⟩ ⟨OR′β⟩ .

(A.9)

We now need to distinguish between the case where (1) R ̸= R′ and
the case (2) R = R′.

For case (1), we obtain

= ⟨ϕ0|R ⟨ϕ0|R′ ORαOR′β |ϕ0⟩R′ |ϕ0⟩R − ⟨ORα⟩ ⟨OR′β⟩

= ⟨ϕ0|R ORα |ϕ0⟩R ⟨ϕ0|R′ OR′β |ϕ0⟩R′ − ⟨ORα⟩ ⟨OR′β⟩

= ⟨Ψ0|ORα|Ψ0⟩ ⟨Ψ0|OR′β|Ψ0⟩ − ⟨ORα⟩ ⟨OR′β⟩

= 0,

(A.10)

where we have assumed that |Ψ0⟩ is normalised such that ⟨ϕ0|R |ϕ0⟩R =

1 for all choices of R. In the last line, we have used that the self-
consistency equation (A.8) is fulfilled.

For case (2), R = R′, we find

= ⟨ϕ0|R ORαORβ |ϕ0⟩R − ⟨ORα⟩ ⟨ORβ⟩ ≡ ∆2
Rαβ. (A.11)

We cannot simplify this expression further without knowing the
precise details of the ground state and so we simply call it ∆2

Rαβ. This
is in fact enough to show that it is safe to ignore the fluctuation terms
in the full Hamiltonian expectation value: consider for instance the



introduction to the microscopic theory of superconductors 40

quadratic part of the full Hamiltonian [Eq. (A.1)],

H(2) = ∑
RR′αβ

cRR′αβORαOR′β =

= ∑
RR′αβ

cRR′αβ

[
⟨ORα⟩ ⟨OR′β⟩+ ⟨ORα⟩ (OR′β − ⟨OR′β⟩)

+ (ORα − ⟨ORα⟩) ⟨OR′β⟩+ (ORα − ⟨ORα⟩)(OR′β − ⟨OR′β⟩)
]
.

(A.12)
Its expectation value in the MFT ground state becomes

⟨Ψ0| H(2) |Ψ0⟩ = ∑
RR′αβ

cRR′αβ

[
⟨ORα⟩ ⟨OR′β⟩

+ ⟨Ψ0| (ORα − ⟨ORα⟩)(OR′β − ⟨OR′β⟩) |Ψ0⟩
]

= ∑
RR′αβ

cRR′αβ

[
⟨ORα⟩ ⟨OR′β⟩+ δRR′∆2

Rαβ

]
= ∑

RR′αβ

cRR′αβ ⟨ORα⟩ ⟨OR′β⟩︸ ︷︷ ︸
∼O(N2)

+ ∑
Rαβ

cRRαβ∆2
Rαβ︸ ︷︷ ︸

∼O(N)

N→∞
= ∑

RR′αβ

cRR′αβ ⟨ORα⟩ ⟨OR′β⟩ ,

(A.13)
where N is the number of all lattice sites R. Here we have used that
the first term is a double sum where most of the terms are non-zero
while the second term is only a single sum over the lattice.6 We note 6 Crucially, this assumes that ⟨ORα⟩ ̸= 0

is non-zero in the thermodynamic limit,
meaning that the last equation (and
thereby the whole MFT approximation)
is not valid when ⟨ORα⟩ = 0 is the only
solution to the self-consistency equation
Eq. (A.8).

that the last equation in Eq. (A.13) is exactly the same as if we had
ignored the fluctuation term from the outset. Along very similar
lines, it is now straightforward to show that the expectation values of
the fluctuation terms corresponding to cubic and higher interaction
terms H(3), H(4), . . . can also be neglected compared to the respective
MFT terms.7 7 The basic idea is always that the

fluctuation term where R, R′, R′′, . . .
area all different has zero expectation
value in the MFT state, so that only
terms of lower order (in N) than the
mean field contribution survive.

In conclusion, decomposing the full Hamiltonian of Eq. (A.1) as
H = HMFT + Hfluct where HMFT is the MFT Hamiltonian defined in
Eq. (A.4)8 and Hfluct incorporates all fluctuations of the form

8 We have suppressed the dependence
on ⟨O⟩ for simplicity.(ORα − ⟨ORα⟩)(OR′β − ⟨OR′β⟩),

(ORα − ⟨ORα⟩)(OR′β − ⟨OR′β⟩)(OR′′γ − ⟨OR′′γ⟩), · · · ,
(A.14)

we can show that, in the thermodynamic limit N → ∞,

⟨Ψ0| H |Ψ0⟩ = ⟨Ψ0| HMFT |Ψ0⟩ = EMFT, (A.15)

where EMFT is the lowest eigenvalue of HMFT assuming the self-
consistency equations have been solved. Employing the Rayleigh-Ritz
theorem, which states that the expectation value of H in any state
must be larger equal its exact ground state energy eigenvalue EGS, we
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find
EMFT ≥ EGS, (A.16)

see Eq. (4.30) for an explicit example of this relation. This implies
that MFT is a variational method: effectively, we have restricted our-
self to a special class of states in Hilbert space [the product states
of Eq. (A.5)], and EMFT is the minimal energy expectation value9 in 9 using the full Hamiltonian H

this variational subspace. Correspondingly, |Ψ0⟩ is the product state
that is closest to the exact ground state of H. Sometimes, there are
multiply mean field ansätze that we can make, for instance there may
be multiple inequivalent choices of the operator basis ORα.10 In this 10 Take for instance the fermionic

Hamiltonian H = c†
1c1c†

2c2 = c†
1c†

2c2c1.
We could for example choose to do
MFT with the operators O1 = c†

1c1,
O2 = c†

2c2 or the operators Õ1 = c†
1c†

2 ,
Õ2 = c2c1. The physical predictions
from these two choices are not neces-
sarily equivalent, we have to pick the
MFT convention that leads to a smaller
ground state energy in order to best
approximate the true (not MFT) ground
state.

case, Eq. (A.16) guarantees that the ansatz that results in the small-
est possible EMFT is one that is closest to the actual solution. This
shows why the seemingly innocuous Eq. (A.16) is so important: not
only does it prove the intuitive result that the MFT ground state |Ψ0⟩,
and not any other MFT eigenstate |Ψ⟩, is closest to the true ground
state of H; it also guarantees that the MFT solution cannot overshoot
the true ground state energy and get worse again as we continue to
minimise EMFT.

However, unfortunately, we may never achieve EMFT = EGS in
some cases: Since the exact ground state of H is not necessarily a
product state at all, there may always be an offset between EMFT and
EGS; meaning MFT would not be a good approximation even when
the self-consistency equations are solved by a non-zero mean field. Unless
we have an exact solution at hand, like in the section on Mean field
solution, we can never exclude this case in principle. All we can do is
do MFT or make some other approximation and hope for the best.11 11 As noted before, for the supercon-

ductor model Eq. (4.1) that we consider
in these notes an exact (but tedious)
solution is in fact possible. In the ther-
modynamic limit, this solution fully
agrees with BCS mean field theory and
thereby validates it, see:

J. Dukelsky, S. Pittel, and G. Sierra.
Colloquium: Exactly solvable
richardson-gaudin models for many-
body quantum systems. Rev. Mod. Phys.,
76:643–662, Aug 2004
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